Library Coq.Structures.OrdersFacts
Module Type CompareFacts (Import O:DecStrOrder').
Lemma compare_eq_iff x y : (x ?= y) = Eq <-> x==y.
Lemma compare_eq x y : (x ?= y) = Eq -> x==y.
Lemma compare_lt_iff x y : (x ?= y) = Lt <-> x<y.
Lemma compare_gt_iff x y : (x ?= y) = Gt <-> y<x.
Lemma compare_nlt_iff x y : (x ?= y) <> Lt <-> ~(x<y).
Lemma compare_ngt_iff x y : (x ?= y) <> Gt <-> ~(y<x).
Hint Rewrite compare_eq_iff compare_lt_iff compare_gt_iff : order.
Instance compare_compat : Proper (eq==>eq==>Logic.eq) compare.
Lemma compare_refl x : (x ?= x) = Eq.
Lemma compare_antisym x y : (y ?= x) = CompOpp (x ?= y).
End CompareFacts.
Module OrderedTypeFullFacts (Import O:OrderedTypeFull').
Module OrderTac := OTF_to_OrderTac O.
Ltac order := OrderTac.order.
Ltac iorder := intuition order.
Instance le_compat : Proper (eq==>eq==>iff) le.
Instance le_preorder : PreOrder le.
Instance le_order : PartialOrder eq le.
Instance le_antisym : Antisymmetric _ eq le.
Lemma le_not_gt_iff : forall x y, x<=y <-> ~y<x.
Lemma lt_not_ge_iff : forall x y, x<y <-> ~y<=x.
Lemma le_or_gt : forall x y, x<=y \/ y<x.
Lemma lt_or_ge : forall x y, x<y \/ y<=x.
Lemma eq_is_le_ge : forall x y, x==y <-> x<=y /\ y<=x.
Include CompareFacts O.
Lemma compare_le_iff x y : compare x y <> Gt <-> x<=y.
Lemma compare_ge_iff x y : compare x y <> Lt <-> y<=x.
End OrderedTypeFullFacts.
Module OrderedTypeFacts (Import O: OrderedType').
Module OrderTac := OT_to_OrderTac O.
Ltac order := OrderTac.order.
Notation "x <= y" := (~lt y x) : order.
Infix "?=" := compare (at level 70, no associativity) : order.
Local Open Scope order.
Tactic Notation "elim_compare" constr(x) constr(y) :=
destruct (compare_spec x y).
Tactic Notation "elim_compare" constr(x) constr(y) "as" ident(h) :=
destruct (compare_spec x y) as [h|h|h].
The following lemmas are either re-phrasing of eq_equiv and
lt_strorder or immediately provable by order. Interest:
compatibility, test of order, etc
Definition eq_refl (x:t) : x==x := Equivalence_Reflexive x.
Definition eq_sym (x y:t) : x==y -> y==x := Equivalence_Symmetric x y.
Definition eq_trans (x y z:t) : x==y -> y==z -> x==z :=
Equivalence_Transitive x y z.
Definition lt_trans (x y z:t) : x<y -> y<z -> x<z :=
StrictOrder_Transitive x y z.
Definition lt_irrefl (x:t) : ~x<x := StrictOrder_Irreflexive x.
Include CompareFacts O.
Notation compare_le_iff := compare_ngt_iff (only parsing).
Notation compare_ge_iff := compare_nlt_iff (only parsing).
For compatibility reasons
Definition eq_dec := eq_dec.
Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}.
Definition eqb x y : bool := if eq_dec x y then true else false.
Lemma if_eq_dec x y (B:Type)(b b':B) :
(if eq_dec x y then b else b') =
(match compare x y with Eq => b | _ => b' end).
Lemma eqb_alt :
forall x y, eqb x y = match compare x y with Eq => true | _ => false end.
Instance eqb_compat : Proper (eq==>eq==>Logic.eq) eqb.
End OrderedTypeFacts.
Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}.
Definition eqb x y : bool := if eq_dec x y then true else false.
Lemma if_eq_dec x y (B:Type)(b b':B) :
(if eq_dec x y then b else b') =
(match compare x y with Eq => b | _ => b' end).
Lemma eqb_alt :
forall x y, eqb x y = match compare x y with Eq => true | _ => false end.
Instance eqb_compat : Proper (eq==>eq==>Logic.eq) eqb.
End OrderedTypeFacts.
Module OrderedTypeTest (Import O:OrderedType').
Module Import MO := OrderedTypeFacts O.
Local Open Scope order.
Lemma lt_not_eq x y : x<y -> ~x==y.
Lemma lt_eq x y z : x<y -> y==z -> x<z.
Lemma eq_lt x y z : x==y -> y<z -> x<z.
Lemma le_eq x y z : x<=y -> y==z -> x<=z.
Lemma eq_le x y z : x==y -> y<=z -> x<=z.
Lemma neq_eq x y z : ~x==y -> y==z -> ~x==z.
Lemma eq_neq x y z : x==y -> ~y==z -> ~x==z.
Lemma le_lt_trans x y z : x<=y -> y<z -> x<z.
Lemma lt_le_trans x y z : x<y -> y<=z -> x<z.
Lemma le_trans x y z : x<=y -> y<=z -> x<=z.
Lemma le_antisym x y : x<=y -> y<=x -> x==y.
Lemma le_neq x y : x<=y -> ~x==y -> x<y.
Lemma neq_sym x y : ~x==y -> ~y==x.
Lemma lt_le x y : x<y -> x<=y.
Lemma gt_not_eq x y : y<x -> ~x==y.
Lemma eq_not_lt x y : x==y -> ~x<y.
Lemma eq_not_gt x y : x==y -> ~ y<x.
Lemma lt_not_gt x y : x<y -> ~ y<x.
Lemma eq_is_nlt_ngt x y : x==y <-> ~x<y /\ ~y<x.
End OrderedTypeTest.
Reversed OrderedTypeFull.
Module OrderedTypeRev (O:OrderedTypeFull) <: OrderedTypeFull.
Definition t := O.t.
Definition eq := O.eq.
Program Instance eq_equiv : Equivalence eq.
Definition eq_dec := O.eq_dec.
Definition lt := flip O.lt.
Definition le := flip O.le.
Instance lt_strorder: StrictOrder lt.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Lemma le_lteq : forall x y, le x y <-> lt x y \/ eq x y.
Definition compare := flip O.compare.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
End OrderedTypeRev.
Unset Implicit Arguments.
Order relations derived from a compare function.
Module Type CompareBasedOrder (Import E:EqLtLe')(Import C:HasCmp E).
Include CmpNotation E C.
Include IsEq E.
Axiom compare_eq_iff : forall x y, (x ?= y) = Eq <-> x == y.
Axiom compare_lt_iff : forall x y, (x ?= y) = Lt <-> x < y.
Axiom compare_le_iff : forall x y, (x ?= y) <> Gt <-> x <= y.
Axiom compare_antisym : forall x y, (y ?= x) = CompOpp (x ?= y).
End CompareBasedOrder.
Module Type CompareBasedOrderFacts
(Import E:EqLtLe')
(Import C:HasCmp E)
(Import O:CompareBasedOrder E C).
Lemma compare_spec x y : CompareSpec (x==y) (x<y) (y<x) (x?=y).
Lemma compare_eq x y : (x ?= y) = Eq -> x==y.
Lemma compare_refl x : (x ?= x) = Eq.
Lemma compare_gt_iff x y : (x ?= y) = Gt <-> y<x.
Lemma compare_ge_iff x y : (x ?= y) <> Lt <-> y<=x.
Lemma compare_ngt_iff x y : (x ?= y) <> Gt <-> ~(y<x).
Lemma compare_nlt_iff x y : (x ?= y) <> Lt <-> ~(x<y).
Lemma compare_nle_iff x y : (x ?= y) = Gt <-> ~(x<=y).
Lemma compare_nge_iff x y : (x ?= y) = Lt <-> ~(y<=x).
Lemma lt_irrefl x : ~ (x<x).
Lemma lt_eq_cases n m : n <= m <-> n < m \/ n==m.
End CompareBasedOrderFacts.
Basic facts about boolean comparisons
Module Type BoolOrderFacts
(Import E:EqLtLe')
(Import C:HasCmp E)
(Import F:HasBoolOrdFuns' E)
(Import O:CompareBasedOrder E C)
(Import S:BoolOrdSpecs E F).
Include CompareBasedOrderFacts E C O.
Nota : apart from eqb_compare below, facts about eqb
are in BoolEqualityFacts
Alternate specifications based on BoolSpec and reflect
Lemma leb_spec0 x y : reflect (x<=y) (x<=?y).
Lemma leb_spec x y : BoolSpec (x<=y) (y<x) (x<=?y).
Lemma ltb_spec0 x y : reflect (x<y) (x<?y).
Lemma ltb_spec x y : BoolSpec (x<y) (y<=x) (x<?y).
Negated variants of the specifications
Lemma leb_nle x y : x <=? y = false <-> ~ (x <= y).
Lemma leb_gt x y : x <=? y = false <-> y < x.
Lemma ltb_nlt x y : x <? y = false <-> ~ (x < y).
Lemma ltb_ge x y : x <? y = false <-> y <= x.
Basic equality laws for boolean tests
Lemma leb_refl x : x <=? x = true.
Lemma leb_antisym x y : y <=? x = negb (x <? y).
Lemma ltb_irrefl x : x <? x = false.
Lemma ltb_antisym x y : y <? x = negb (x <=? y).
Relation between compare and the boolean comparisons