Library Coq.Reals.Abstract.ConstructiveMinMax
Require Import QArith.
Require Import Qabs.
Require Import ConstructiveReals.
Require Import ConstructiveAbs.
Require Import ConstructiveRealsMorphisms.
Local Open Scope ConstructiveReals.
Definition and properties of minimum and maximum.
WARNING: this file is experimental and likely to change in future releases.
Definition CRmin {R : ConstructiveReals} (x y : CRcarrier R) : CRcarrier R
:= (x + y - CRabs _ (y - x)) * CR_of_Q _ (1#2).
Lemma CRmin_lt_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y < y -> CRmin x y == x.
Add Parametric Morphism {R : ConstructiveReals} : CRmin
with signature (CReq R) ==> (CReq R) ==> (CReq R)
as CRmin_morph.
#[global]
Instance CRmin_morphT
: forall {R : ConstructiveReals},
CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) (CReq R))) (@CRmin R).
Lemma CRmin_l : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y <= x.
Lemma CRmin_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y <= y.
Lemma CRnegPartAbsMin : forall {R : ConstructiveReals} (x : CRcarrier R),
CRmin 0 x == (x - CRabs _ x) * (CR_of_Q _ (1#2)).
Lemma CRmin_sym : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y == CRmin y x.
Lemma CRmin_mult :
forall {R : ConstructiveReals} (p q r : CRcarrier R),
0 <= r -> CRmin (r * p) (r * q) == r * CRmin p q.
Lemma CRmin_plus : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x + CRmin y z == CRmin (x + y) (x + z).
Lemma CRmin_left : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= y -> CRmin x y == x.
Lemma CRmin_right : forall {R : ConstructiveReals} (x y : CRcarrier R),
y <= x -> CRmin x y == y.
Lemma CRmin_lt : forall {R : ConstructiveReals} (x y z : CRcarrier R),
z < x -> z < y -> z < CRmin x y.
Lemma CRmin_contract : forall {R : ConstructiveReals} (x y a : CRcarrier R),
CRabs _ (CRmin x a - CRmin y a) <= CRabs _ (x - y).
Lemma CRmin_glb : forall {R : ConstructiveReals} (x y z:CRcarrier R),
z <= x -> z <= y -> z <= CRmin x y.
Lemma CRmin_assoc : forall {R : ConstructiveReals} (a b c : CRcarrier R),
CRmin a (CRmin b c) == CRmin (CRmin a b) c.
Lemma CRlt_min : forall {R : ConstructiveReals} (x y z : CRcarrier R),
z < CRmin x y -> prod (z < x) (z < y).
Definition CRmax {R : ConstructiveReals} (x y : CRcarrier R) : CRcarrier R
:= (x + y + CRabs _ (y - x)) * CR_of_Q _ (1#2).
Add Parametric Morphism {R : ConstructiveReals} : CRmax
with signature (CReq R) ==> (CReq R) ==> (CReq R)
as CRmax_morph.
#[global]
Instance CRmax_morphT
: forall {R : ConstructiveReals},
CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) (CReq R))) (@CRmax R).
Lemma CRmax_lub : forall {R : ConstructiveReals} (x y z:CRcarrier R),
x <= z -> y <= z -> CRmax x y <= z.
Lemma CRmax_l : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= CRmax x y.
Lemma CRmax_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
y <= CRmax x y.
Lemma CRposPartAbsMax : forall {R : ConstructiveReals} (x : CRcarrier R),
CRmax 0 x == (x + CRabs _ x) * (CR_of_Q R (1#2)).
Lemma CRmax_sym : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmax x y == CRmax y x.
Lemma CRmax_plus : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x + CRmax y z == CRmax (x + y) (x + z).
Lemma CRmax_left : forall {R : ConstructiveReals} (x y : CRcarrier R),
y <= x -> CRmax x y == x.
Lemma CRmax_right : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= y -> CRmax x y == y.
Lemma CRmax_contract : forall {R : ConstructiveReals} (x y a : CRcarrier R),
CRabs _ (CRmax x a - CRmax y a) <= CRabs _ (x - y).
Lemma CRmax_lub_lt : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x < z -> y < z -> CRmax x y < z.
Lemma CRmax_assoc : forall {R : ConstructiveReals} (a b c : CRcarrier R),
CRmax a (CRmax b c) == CRmax (CRmax a b) c.
Lemma CRmax_min_mult_neg :
forall {R : ConstructiveReals} (p q r:CRcarrier R),
r <= 0 -> CRmax (r * p) (r * q) == r * CRmin p q.
Lemma CRlt_max : forall {R : ConstructiveReals} (x y z : CRcarrier R),
CRmax x y < z -> prod (x < z) (y < z).
Lemma CRmax_mult :
forall {R : ConstructiveReals} (p q r:CRcarrier R),
0 <= r -> CRmax (r * p) (r * q) == r * CRmax p q.
Lemma CRmin_max_mult_neg :
forall {R : ConstructiveReals} (p q r:CRcarrier R),
r <= 0 -> CRmin (r * p) (r * q) == r * CRmax p q.
Lemma CRmorph_min : forall {R1 R2 : ConstructiveReals}
(f : @ConstructiveRealsMorphism R1 R2)
(a b : CRcarrier R1),
CRmorph f (CRmin a b)
== CRmin (CRmorph f a) (CRmorph f b).