Library Coq.Classes.CEquivalence
Typeclass-based setoids. Definitions on Equivalence.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Classes.Init.
Require Import Relation_Definitions.
Require Export Coq.Classes.CRelationClasses.
Require Import Coq.Classes.CMorphisms.
Set Implicit Arguments.
Generalizable Variables A R eqA B S eqB.
Local Open Scope signatureT_scope.
Definition equiv `{Equivalence A R} : crelation A := R.
Overloaded notations for setoid equivalence and inequivalence.
Not to be confused with eq and =.
Declare Scope equiv_scope.
Notation " x === y " := (equiv x y) (at level 70, no associativity) : equiv_scope.
Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : equiv_scope.
Local Open Scope equiv_scope.
Overloading for PER.
Overloaded notation for partial equivalence.
Shortcuts to make proof search easier.
#[global]
Program Instance equiv_reflexive `(sa : Equivalence A) : Reflexive equiv.
#[global]
Program Instance equiv_symmetric `(sa : Equivalence A) : Symmetric equiv.
#[global]
Program Instance equiv_transitive `(sa : Equivalence A) : Transitive equiv.
Arguments equiv_symmetric {A R} sa x y : rename.
Arguments equiv_transitive {A R} sa x y z : rename.
Use the substitute command which substitutes an equivalence in every hypothesis.
Ltac setoid_subst H :=
match type of H with
?x === ?y => substitute H ; clear H x
end.
Ltac setoid_subst_nofail :=
match goal with
| [ H : ?x === ?y |- _ ] => setoid_subst H ; setoid_subst_nofail
| _ => idtac
end.
subst* will try its best at substituting every equality in the goal.
Tactic Notation "subst" "*" := subst_no_fail ; setoid_subst_nofail.
Simplify the goal w.r.t. equivalence.
Ltac equiv_simplify_one :=
match goal with
| [ H : ?x === ?x |- _ ] => clear H
| [ H : ?x === ?y |- _ ] => setoid_subst H
| [ |- ?x =/= ?y ] => let name:=fresh "Hneq" in intro name
| [ |- ~ ?x === ?y ] => let name:=fresh "Hneq" in intro name
end.
Ltac equiv_simplify := repeat equiv_simplify_one.
"reify" relations which are equivalences to applications of the overloaded equiv method
for easy recognition in tactics.
Ltac equivify_tac :=
match goal with
| [ s : Equivalence ?A ?R, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
| [ s : Equivalence ?A ?R |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
end.
Ltac equivify := repeat equivify_tac.
Section Respecting.
Here we build an equivalence instance for functions which relates respectful ones only,
we do not export it.
Definition respecting `(eqa : Equivalence A (R : crelation A),
eqb : Equivalence B (R' : crelation B)) : Type :=
{ morph : A -> B & respectful R R' morph morph }.
Program Instance respecting_equiv `(eqa : Equivalence A R, eqb : Equivalence B R') :
Equivalence (fun (f g : respecting eqa eqb) =>
forall (x y : A), R x y -> R' (projT1 f x) (projT1 g y)).
Solve Obligations with unfold respecting in * ; simpl_crelation ; program_simpl.
End Respecting.
The default equivalence on function spaces, with higher-priority than eq.
#[global]
Instance pointwise_reflexive {A} `(reflb : Reflexive B eqB) :
Reflexive (pointwise_relation A eqB) | 9.
#[global]
Instance pointwise_symmetric {A} `(symb : Symmetric B eqB) :
Symmetric (pointwise_relation A eqB) | 9.
#[global]
Instance pointwise_transitive {A} `(transb : Transitive B eqB) :
Transitive (pointwise_relation A eqB) | 9.
#[global]
Instance pointwise_equivalence {A} `(eqb : Equivalence B eqB) :
Equivalence (pointwise_relation A eqB) | 9.