Library Coq.micromega.ZifyN



Require Import BinNat BinInt Znat Zdiv.
Require Import ZifyClasses ZifyInst Zify.

Ltac zify_convert_to_euclidean_division_equations_flag ::= constr:(true).

Support for N

#[local]
Existing Instance Inj_N_Z.

#[global]
Instance Op_N_div : BinOp N.div :=
  {| TBOp := Z.div ; TBOpInj := N2Z.inj_div |}.
Add Zify BinOp Op_N_div.

#[global]
Instance Op_N_mod : BinOp N.modulo :=
  {| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem |}.
Add Zify BinOp Op_N_mod.

#[global]
Instance Op_N_pow : BinOp N.pow :=
  {| TBOp := Z.pow ; TBOpInj := N2Z.inj_pow|}.
Add Zify BinOp Op_N_pow.

#[local] Open Scope Z_scope.

#[global]
Instance SatDiv : Saturate Z.div :=
  {|
    PArg1 := fun x => 0 <= x;
    PArg2 := fun y => 0 <= y;
    PRes := fun r => 0 <= r;
    SatOk := Z_div_nonneg_nonneg
  |}.
Add Zify Saturate SatDiv.

#[global]
Instance SatMod : Saturate Z.modulo :=
  {|
    PArg1 := fun x => 0 <= x;
    PArg2 := fun y => 0 <= y;
    PRes := fun r => 0 <= r;
    SatOk := Z_mod_nonneg_nonneg
  |}.
Add Zify Saturate SatMod.