Library Coq.setoid_ring.Ring_polynom
Set Implicit Arguments.
Require Import Setoid Morphisms.
Require Import BinList BinPos BinNat BinInt.
Require Export Ring_theory.
Local Open Scope positive_scope.
Import RingSyntax.
Section MakeRingPol.
Variable R:Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable req : R -> R -> Prop.
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
Variable C: Type.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
Variable cdiv: C -> C -> C * C.
Variable div_th: div_theory req cadd cmul phi cdiv.
Notation "0" := rO. Notation "1" := rI.
Infix "+" := radd. Infix "*" := rmul.
Infix "-" := rsub. Notation "- x" := (ropp x).
Infix "==" := req.
Infix "^" := (pow_pos rmul).
Infix "+!" := cadd. Infix "*!" := cmul.
Infix "-! " := csub. Notation "-! x" := (copp x).
Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
Add Morphism radd with signature (req ==> req ==> req) as radd_ext.
Add Morphism rmul with signature (req ==> req ==> req) as rmul_ext.
Add Morphism ropp with signature (req ==> req) as ropp_ext.
Add Morphism rsub with signature (req ==> req ==> req) as rsub_ext.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
Ltac add_permut_rec t :=
match t with
| ?x + ?y => add_permut_rec y || add_permut_rec x
| _ => add_push t; apply (Radd_ext Reqe); [|reflexivity]
end.
Ltac add_permut :=
repeat (reflexivity ||
match goal with |- ?t == _ => add_permut_rec t end).
Ltac mul_permut_rec t :=
match t with
| ?x * ?y => mul_permut_rec y || mul_permut_rec x
| _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity]
end.
Ltac mul_permut :=
repeat (reflexivity ||
match goal with |- ?t == _ => mul_permut_rec t end).
Inductive Pol : Type :=
| Pc : C -> Pol
| Pinj : positive -> Pol -> Pol
| PX : Pol -> positive -> Pol -> Pol.
Definition P0 := Pc cO.
Definition P1 := Pc cI.
Fixpoint Peq (P P' : Pol) {struct P'} : bool :=
match P, P' with
| Pc c, Pc c' => c ?=! c'
| Pinj j Q, Pinj j' Q' =>
match j ?= j' with
| Eq => Peq Q Q'
| _ => false
end
| PX P i Q, PX P' i' Q' =>
match i ?= i' with
| Eq => if Peq P P' then Peq Q Q' else false
| _ => false
end
| _, _ => false
end.
Infix "?==" := Peq.
Definition mkPinj j P :=
match P with
| Pc _ => P
| Pinj j' Q => Pinj (j + j') Q
| _ => Pinj j P
end.
Definition mkPinj_pred j P:=
match j with
| xH => P
| xO j => Pinj (Pos.pred_double j) P
| xI j => Pinj (xO j) P
end.
Definition mkPX P i Q :=
match P with
| Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q
| Pinj _ _ => PX P i Q
| PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q
end.
Definition mkXi i := PX P1 i P0.
Definition mkX := mkXi 1.
Opposite of addition
Fixpoint Popp (P:Pol) : Pol :=
match P with
| Pc c => Pc (-! c)
| Pinj j Q => Pinj j (Popp Q)
| PX P i Q => PX (Popp P) i (Popp Q)
end.
Notation "-- P" := (Popp P).
Addition et subtraction
Fixpoint PaddC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 +! c)
| Pinj j Q => Pinj j (PaddC Q c)
| PX P i Q => PX P i (PaddC Q c)
end.
Fixpoint PsubC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 -! c)
| Pinj j Q => Pinj j (PsubC Q c)
| PX P i Q => PX P i (PsubC Q c)
end.
Section PopI.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PaddI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC Q c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PaddI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PaddI (Pos.pred_double j) Q')
| xI j => PX P i (PaddI (xO j) Q')
end
end.
Fixpoint PsubI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC (--Q) c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PsubI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PsubI (Pos.pred_double j) Q')
| xI j => PX P i (PsubI (xO j) Q')
end
end.
Variable P' : Pol.
Fixpoint PaddX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX P' i' P
| Pinj j Q' =>
match j with
| xH => PX P' i' Q'
| xO j => PX P' i' (Pinj (Pos.pred_double j) Q')
| xI j => PX P' i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PaddX k P) i Q'
end
end.
Fixpoint PsubX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX (--P') i' P
| Pinj j Q' =>
match j with
| xH => PX (--P') i' Q'
| xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q')
| xI j => PX (--P') i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PsubX k P) i Q'
end
end.
End PopI.
Fixpoint Padd (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PaddC P c'
| Pinj j' Q' => PaddI Padd Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX P' i' (PaddC Q' c)
| Pinj j Q =>
match j with
| xH => PX P' i' (Padd Q Q')
| xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
| Z0 => mkPX (Padd P P') i (Padd Q Q')
| Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
end
end
end.
Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PsubC P c'
| Pinj j' Q' => PsubI Psub Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX (--P') i' (PaddC (--Q') c)
| Pinj j Q =>
match j with
| xH => PX (--P') i' (Psub Q Q')
| xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
| Z0 => mkPX (Psub P P') i (Psub Q Q')
| Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
end
end
end.
Infix "--" := Psub.
Multiplication
Fixpoint PmulC_aux (P:Pol) (c:C) : Pol :=
match P with
| Pc c' => Pc (c' *! c)
| Pinj j Q => mkPinj j (PmulC_aux Q c)
| PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c)
end.
Definition PmulC P c :=
if c ?=! cO then P0 else
if c ?=! cI then P else PmulC_aux P c.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PmulI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PmulC Q c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
| Z0 => mkPinj j (Pmul Q' Q)
| Zneg k => mkPinj j' (PmulI k Q')
end
| PX P' i' Q' =>
match j with
| xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
| xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q')
| xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
end
end.
End PmulI.
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
match P'' with
| Pc c => PmulC P c
| Pinj j' Q' => PmulI Pmul Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PmulC P'' c
| Pinj j Q =>
let QQ' :=
match j with
| xH => Pmul Q Q'
| xO j => Pmul (Pinj (Pos.pred_double j) Q) Q'
| xI j => Pmul (Pinj (xO j) Q) Q'
end in
mkPX (Pmul P P') i' QQ'
| PX P i Q=>
let QQ' := Pmul Q Q' in
let PQ' := PmulI Pmul Q' xH P in
let QP' := Pmul (mkPinj xH Q) P' in
let PP' := Pmul P P' in
(mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ'
end
end.
Infix "**" := Pmul.
Monomial
A monomial is X1^k1...Xi^ki. Its representation
is a simplified version of the polynomial representation:
- mon0 correspond to the polynom P1.
- (zmon j M) corresponds to (Pinj j ...), i.e. skip j variable indices.
- (vmon i M) is X^i*M with X the current variable, its corresponds to (PX P1 i ...)]
Inductive Mon: Set :=
| mon0: Mon
| zmon: positive -> Mon -> Mon
| vmon: positive -> Mon -> Mon.
Definition mkZmon j M :=
match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M :=
match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M :=
match M with
| mon0 => vmon i mon0
| zmon j m => vmon i (zmon_pred j m)
| vmon i' m => vmon (i+i') m
end.
Fixpoint CFactor (P: Pol) (c: C) {struct P}: Pol * Pol :=
match P with
| Pc c1 => let (q,r) := cdiv c1 c in (Pc r, Pc q)
| Pinj j1 P1 =>
let (R,S) := CFactor P1 c in
(mkPinj j1 R, mkPinj j1 S)
| PX P1 i Q1 =>
let (R1, S1) := CFactor P1 c in
let (R2, S2) := CFactor Q1 c in
(mkPX R1 i R2, mkPX S1 i S2)
end.
Fixpoint MFactor (P: Pol) (c: C) (M: Mon) {struct P}: Pol * Pol :=
match P, M with
_, mon0 => if (ceqb c cI) then (Pc cO, P) else CFactor P c
| Pc _, _ => (P, Pc cO)
| Pinj j1 P1, zmon j2 M1 =>
match j1 ?= j2 with
Eq => let (R,S) := MFactor P1 c M1 in
(mkPinj j1 R, mkPinj j1 S)
| Lt => let (R,S) := MFactor P1 c (zmon (j2 - j1) M1) in
(mkPinj j1 R, mkPinj j1 S)
| Gt => (P, Pc cO)
end
| Pinj _ _, vmon _ _ => (P, Pc cO)
| PX P1 i Q1, zmon j M1 =>
let M2 := zmon_pred j M1 in
let (R1, S1) := MFactor P1 c M in
let (R2, S2) := MFactor Q1 c M2 in
(mkPX R1 i R2, mkPX S1 i S2)
| PX P1 i Q1, vmon j M1 =>
match i ?= j with
Eq => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in
(mkPX R1 i Q1, S1)
| Lt => let (R1,S1) := MFactor P1 c (vmon (j - i) M1) in
(mkPX R1 i Q1, S1)
| Gt => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in
(mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO))
end
end.
Definition POneSubst (P1: Pol) (cM1: C * Mon) (P2: Pol): option Pol :=
let (c,M1) := cM1 in
let (Q1,R1) := MFactor P1 c M1 in
match R1 with
(Pc c) => if c ?=! cO then None
else Some (Padd Q1 (Pmul P2 R1))
| _ => Some (Padd Q1 (Pmul P2 R1))
end.
Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) : Pol :=
match POneSubst P1 cM1 P2 with
Some P3 => match n with S n1 => PNSubst1 P3 cM1 P2 n1 | _ => P3 end
| _ => P1
end.
Definition PNSubst (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat): option Pol :=
match POneSubst P1 cM1 P2 with
Some P3 => match n with S n1 => Some (PNSubst1 P3 cM1 P2 n1) | _ => None end
| _ => None
end.
Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : Pol :=
match LM1 with
cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
| _ => P1
end.
Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : option Pol :=
match LM1 with
cons (M1,P2) LM2 =>
match PNSubst P1 M1 P2 n with
Some P3 => Some (PSubstL1 P3 LM2 n)
| None => PSubstL P1 LM2 n
end
| _ => None
end.
Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) : Pol :=
match PSubstL P1 LM1 n with
Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
| _ => P1
end.
Evaluation of a polynomial towards R
Fixpoint Pphi(l:list R) (P:Pol) : R :=
match P with
| Pc c => [c]
| Pinj j Q => Pphi (jump j l) Q
| PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
Definition Pequiv (P Q : Pol) := forall l, P@l == Q@l.
Infix "===" := Pequiv (at level 70, no associativity).
Instance Pequiv_eq : Equivalence Pequiv.
Instance Pphi_ext : Proper (eq ==> Pequiv ==> req) Pphi.
Instance Pinj_ext : Proper (eq ==> Pequiv ==> Pequiv) Pinj.
Instance PX_ext : Proper (Pequiv ==> eq ==> Pequiv ==> Pequiv) PX.
Evaluation of a monomial towards R
Fixpoint Mphi(l:list R) (M: Mon) : R :=
match M with
| mon0 => rI
| zmon j M1 => Mphi (jump j l) M1
| vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i
end.
Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
Proofs
Ltac destr_pos_sub :=
match goal with |- context [Z.pos_sub ?x ?y] =>
generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
Lemma jump_add' i j (l:list R) : jump (i + j) l = jump j (jump i l).
Lemma Peq_ok P P' : (P ?== P') = true -> P === P'.
Lemma Peq_spec P P' : BoolSpec (P === P') True (P ?== P').
Lemma Pphi0 l : P0@l == 0.
Lemma Pphi1 l : P1@l == 1.
Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Instance mkPinj_ext : Proper (eq ==> Pequiv ==> Pequiv) mkPinj.
Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Lemma mkPX_ok l P i Q :
(mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Instance mkPX_ext : Proper (Pequiv ==> eq ==> Pequiv ==> Pequiv) mkPX.
Hint Rewrite
Pphi0
Pphi1
mkPinj_ok
mkPX_ok
(morph0 CRmorph)
(morph1 CRmorph)
(morph0 CRmorph)
(morph_add CRmorph)
(morph_mul CRmorph)
(morph_sub CRmorph)
(morph_opp CRmorph)
: Esimpl.
Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Lemma Popp_ok P l : (--P)@l == - P@l.
Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
Lemma PaddX_ok P' P k l :
(forall P l, (P++P')@l == P@l + P'@l) ->
(PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Lemma Psub_opp P' P : P -- P' === P ++ (--P').
Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Lemma PmulI_ok P' :
(forall P l, (Pmul P P') @ l == P @ l * P' @ l) ->
forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Lemma mkZmon_ok M j l :
(mkZmon j M) @@ l == (zmon j M) @@ l.
Lemma zmon_pred_ok M j l :
(zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Lemma mkVmon_ok M i l :
(mkVmon i M)@@l == M@@l * (hd l)^i.
Ltac destr_factor := match goal with
| H : context [CFactor ?P _] |- context [CFactor ?P ?c] =>
destruct (CFactor P c); destr_factor; rewrite H; clear H
| H : context [MFactor ?P _ _] |- context [MFactor ?P ?c ?M] =>
specialize (H M); destruct (MFactor P c M); destr_factor; rewrite H; clear H
| _ => idtac
end.
Lemma Mcphi_ok P c l :
let (Q,R) := CFactor P c in
P@l == Q@l + [c] * R@l.
Lemma Mphi_ok P (cM: C * Mon) l :
let (c,M) := cM in
let (Q,R) := MFactor P c M in
P@l == Q@l + [c] * M@@l * R@l.
Lemma POneSubst_ok P1 cM1 P2 P3 l :
POneSubst P1 cM1 P2 = Some P3 ->
[fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Lemma PNSubst1_ok n P1 cM1 P2 l :
[fst cM1] * (snd cM1)@@l == P2@l ->
P1@l == (PNSubst1 P1 cM1 P2 n)@l.
Lemma PNSubst_ok n P1 cM1 P2 l P3 :
PNSubst P1 cM1 P2 n = Some P3 ->
[fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) : Prop :=
match LM1 with
| (M1,P2) :: LM2 => ([fst M1] * (snd M1)@@l == P2@l) /\ MPcond LM2 l
| _ => True
end.
Lemma PSubstL1_ok n LM1 P1 l :
MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Lemma PSubstL_ok n LM1 P1 P2 l :
PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Lemma PNSubstL_ok m n LM1 P1 l :
MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Definition of polynomial expressions
Inductive PExpr : Type :=
| PEO : PExpr
| PEI : PExpr
| PEc : C -> PExpr
| PEX : positive -> PExpr
| PEadd : PExpr -> PExpr -> PExpr
| PEsub : PExpr -> PExpr -> PExpr
| PEmul : PExpr -> PExpr -> PExpr
| PEopp : PExpr -> PExpr
| PEpow : PExpr -> N -> PExpr.
Register PExpr as plugins.ring.pexpr.
Register PEc as plugins.ring.const.
Register PEX as plugins.ring.var.
Register PEadd as plugins.ring.add.
Register PEsub as plugins.ring.sub.
Register PEmul as plugins.ring.mul.
Register PEopp as plugins.ring.opp.
Register PEpow as plugins.ring.pow.
evaluation of polynomial expressions towards R
evaluation of polynomial expressions towards R
Fixpoint PEeval (l:list R) (pe:PExpr) {struct pe} : R :=
match pe with
| PEO => rO
| PEI => rI
| PEc c => phi c
| PEX j => nth 0 j l
| PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
| PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
| PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
| PEopp pe1 => - (PEeval l pe1)
| PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n)
end.
Strategy expand [PEeval].
Correctness proofs
Lemma mkX_ok p l : nth 0 p l == (mk_X p) @ l.
Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol :=
match p with
| xH => subst_l (res ** P)
| xO p => Ppow_pos (Ppow_pos res P p) P p
| xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P)
end.
Definition Ppow_N P n :=
match n with
| N0 => P1
| Npos p => Ppow_pos P1 P p
end.
Lemma Ppow_pos_ok l :
(forall P, subst_l P@l == P@l) ->
forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Lemma Ppow_N_ok l :
(forall P, subst_l P@l == P@l) ->
forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
End POWER.
Normalization and rewriting
Section NORM_SUBST_REC.
Variable n : nat.
Variable lmp:list (C*Mon*Pol).
Let subst_l P := PNSubstL P lmp n n.
Let Pmul_subst P1 P2 := subst_l (P1 ** P2).
Let Ppow_subst := Ppow_N subst_l.
Fixpoint norm_aux (pe:PExpr) : Pol :=
match pe with
| PEO => Pc cO
| PEI => Pc cI
| PEc c => Pc c
| PEX j => mk_X j
| PEadd (PEopp pe1) pe2 => (norm_aux pe2) -- (norm_aux pe1)
| PEadd pe1 (PEopp pe2) => (norm_aux pe1) -- (norm_aux pe2)
| PEadd pe1 pe2 => (norm_aux pe1) ++ (norm_aux pe2)
| PEsub pe1 pe2 => (norm_aux pe1) -- (norm_aux pe2)
| PEmul pe1 pe2 => (norm_aux pe1) ** (norm_aux pe2)
| PEopp pe1 => -- (norm_aux pe1)
| PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
end.
Definition norm_subst pe := subst_l (norm_aux pe).
Internally, norm_aux is expanded in a large number of cases.
To speed-up proofs, we use an alternative definition.
Definition get_PEopp pe :=
match pe with
| PEopp pe' => Some pe'
| _ => None
end.
Lemma norm_aux_PEadd pe1 pe2 :
norm_aux (PEadd pe1 pe2) =
match get_PEopp pe1, get_PEopp pe2 with
| Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1')
| None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2')
| None, None => (norm_aux pe1) ++ (norm_aux pe2)
end.
Lemma norm_aux_PEopp pe :
match get_PEopp pe with
| Some pe' => norm_aux pe = -- (norm_aux pe')
| None => True
end.
Arguments norm_aux !pe : simpl nomatch.
Lemma norm_aux_spec l pe :
PEeval l pe == (norm_aux pe)@l.
Lemma norm_subst_spec :
forall l pe, MPcond lmp l ->
PEeval l pe == (norm_subst pe)@l.
End NORM_SUBST_REC.
Fixpoint interp_PElist (l:list R) (lpe:list (PExpr*PExpr)) {struct lpe} : Prop :=
match lpe with
| nil => True
| (me,pe)::lpe =>
match lpe with
| nil => PEeval l me == PEeval l pe
| _ => PEeval l me == PEeval l pe /\ interp_PElist l lpe
end
end.
Fixpoint mon_of_pol (P:Pol) : option (C * Mon) :=
match P with
| Pc c => if (c ?=! cO) then None else Some (c, mon0)
| Pinj j P =>
match mon_of_pol P with
| None => None
| Some (c,m) => Some (c, mkZmon j m)
end
| PX P i Q =>
if Peq Q P0 then
match mon_of_pol P with
| None => None
| Some (c,m) => Some (c, mkVmon i m)
end
else None
end.
Fixpoint mk_monpol_list (lpe:list (PExpr * PExpr)) : list (C*Mon*Pol) :=
match lpe with
| nil => nil
| (me,pe)::lpe =>
match mon_of_pol (norm_subst 0 nil me) with
| None => mk_monpol_list lpe
| Some m => (m,norm_subst 0 nil pe):: mk_monpol_list lpe
end
end.
Lemma mon_of_pol_ok : forall P m, mon_of_pol P = Some m ->
forall l, [fst m] * Mphi l (snd m) == P@l.
Lemma interp_PElist_ok : forall l lpe,
interp_PElist l lpe -> MPcond (mk_monpol_list lpe) l.
Lemma norm_subst_ok : forall n l lpe pe,
interp_PElist l lpe ->
PEeval l pe == (norm_subst n (mk_monpol_list lpe) pe)@l.
Lemma ring_correct : forall n l lpe pe1 pe2,
interp_PElist l lpe ->
(let lmp := mk_monpol_list lpe in
norm_subst n lmp pe1 ?== norm_subst n lmp pe2) = true ->
PEeval l pe1 == PEeval l pe2.
Generic evaluation of polynomial towards R avoiding parenthesis
Variable get_sign : C -> option C.
Variable get_sign_spec : sign_theory copp ceqb get_sign.
Section EVALUATION.
Variable mkpow : R -> positive -> R.
Variable mkopp_pow : R -> positive -> R.
Variable mkmult_pow : R -> R -> positive -> R.
Fixpoint mkmult_rec (r:R) (lm:list (R*positive)) {struct lm}: R :=
match lm with
| nil => r
| cons (x,p) t => mkmult_rec (mkmult_pow r x p) t
end.
Definition mkmult1 lm :=
match lm with
| nil => 1
| cons (x,p) t => mkmult_rec (mkpow x p) t
end.
Definition mkmultm1 lm :=
match lm with
| nil => ropp rI
| cons (x,p) t => mkmult_rec (mkopp_pow x p) t
end.
Definition mkmult_c_pos c lm :=
if c ?=! cI then mkmult1 (rev' lm)
else mkmult_rec [c] (rev' lm).
Definition mkmult_c c lm :=
match get_sign c with
| None => mkmult_c_pos c lm
| Some c' =>
if c' ?=! cI then mkmultm1 (rev' lm)
else mkmult_rec [c] (rev' lm)
end.
Definition mkadd_mult rP c lm :=
match get_sign c with
| None => rP + mkmult_c_pos c lm
| Some c' => rP - mkmult_c_pos c' lm
end.
Definition add_pow_list (r:R) n l :=
match n with
| N0 => l
| Npos p => (r,p)::l
end.
Fixpoint add_mult_dev
(rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R :=
match P with
| Pc c =>
let lm := add_pow_list (hd fv) n lm in
mkadd_mult rP c lm
| Pinj j Q =>
add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
let rP := add_mult_dev rP P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd fv) n lm)
end.
Fixpoint mult_dev (P:Pol) (fv : list R) (n:N)
(lm:list (R*positive)) {struct P} : R :=
match P with
| Pc c => mkmult_c c (add_pow_list (hd fv) n lm)
| Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
let rP := mult_dev P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
else
let lmq := add_pow_list (hd fv) n lm in
add_mult_dev rP Q (tail fv) N0 lmq
end.
Definition Pphi_avoid fv P := mult_dev P fv N0 nil.
Fixpoint r_list_pow (l:list (R*positive)) : R :=
match l with
| nil => rI
| cons (r,p) l => pow_pos rmul r p * r_list_pow l
end.
Hypothesis mkpow_spec : forall r p, mkpow r p == pow_pos rmul r p.
Hypothesis mkopp_pow_spec : forall r p, mkopp_pow r p == - (pow_pos rmul r p).
Hypothesis mkmult_pow_spec : forall r x p, mkmult_pow r x p == r * pow_pos rmul x p.
Lemma mkmult_rec_ok : forall lm r, mkmult_rec r lm == r * r_list_pow lm.
Lemma mkmult1_ok : forall lm, mkmult1 lm == r_list_pow lm.
Lemma mkmultm1_ok : forall lm, mkmultm1 lm == - r_list_pow lm.
Lemma r_list_pow_rev : forall l, r_list_pow (rev' l) == r_list_pow l.
Lemma mkmult_c_pos_ok : forall c lm, mkmult_c_pos c lm == [c]* r_list_pow lm.
Lemma mkmult_c_ok : forall c lm, mkmult_c c lm == [c] * r_list_pow lm.
Lemma mkadd_mult_ok : forall rP c lm, mkadd_mult rP c lm == rP + [c]*r_list_pow lm.
Lemma add_pow_list_ok :
forall r n l, r_list_pow (add_pow_list r n l) == pow_N rI rmul r n * r_list_pow l.
Lemma add_mult_dev_ok : forall P rP fv n lm,
add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd fv) n * r_list_pow lm.
Lemma mult_dev_ok : forall P fv n lm,
mult_dev P fv n lm == P@fv * pow_N rI rmul (hd fv) n * r_list_pow lm.
Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv.
End EVALUATION.
Definition Pphi_pow :=
let mkpow x p :=
match p with xH => x | _ => rpow x (Cp_phi (Npos p)) end in
let mkopp_pow x p := ropp (mkpow x p) in
let mkmult_pow r x p := rmul r (mkpow x p) in
Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma local_mkpow_ok r p :
match p with
| xI _ => rpow r (Cp_phi (Npos p))
| xO _ => rpow r (Cp_phi (Npos p))
| 1 => r
end == pow_pos rmul r p.
Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv.
Lemma ring_rw_pow_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_pow l npe.
Fixpoint mkmult_pow (r x:R) (p: positive) {struct p} : R :=
match p with
| xH => r*x
| xO p => mkmult_pow (mkmult_pow r x p) x p
| xI p => mkmult_pow (mkmult_pow (r*x) x p) x p
end.
Definition mkpow x p :=
match p with
| xH => x
| xO p => mkmult_pow x x (Pos.pred_double p)
| xI p => mkmult_pow x x (xO p)
end.
Definition mkopp_pow x p :=
match p with
| xH => -x
| xO p => mkmult_pow (-x) x (Pos.pred_double p)
| xI p => mkmult_pow (-x) x (xO p)
end.
Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma mkmult_pow_ok p r x : mkmult_pow r x p == r * x^p.
Lemma mkpow_ok p x : mkpow x p == x^p.
Lemma mkopp_pow_ok p x : mkopp_pow x p == - x^p.
Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv.
Lemma ring_rw_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_dev l npe.
End MakeRingPol.
Arguments PEO {C}.
Arguments PEI {C}.
Variable get_sign_spec : sign_theory copp ceqb get_sign.
Section EVALUATION.
Variable mkpow : R -> positive -> R.
Variable mkopp_pow : R -> positive -> R.
Variable mkmult_pow : R -> R -> positive -> R.
Fixpoint mkmult_rec (r:R) (lm:list (R*positive)) {struct lm}: R :=
match lm with
| nil => r
| cons (x,p) t => mkmult_rec (mkmult_pow r x p) t
end.
Definition mkmult1 lm :=
match lm with
| nil => 1
| cons (x,p) t => mkmult_rec (mkpow x p) t
end.
Definition mkmultm1 lm :=
match lm with
| nil => ropp rI
| cons (x,p) t => mkmult_rec (mkopp_pow x p) t
end.
Definition mkmult_c_pos c lm :=
if c ?=! cI then mkmult1 (rev' lm)
else mkmult_rec [c] (rev' lm).
Definition mkmult_c c lm :=
match get_sign c with
| None => mkmult_c_pos c lm
| Some c' =>
if c' ?=! cI then mkmultm1 (rev' lm)
else mkmult_rec [c] (rev' lm)
end.
Definition mkadd_mult rP c lm :=
match get_sign c with
| None => rP + mkmult_c_pos c lm
| Some c' => rP - mkmult_c_pos c' lm
end.
Definition add_pow_list (r:R) n l :=
match n with
| N0 => l
| Npos p => (r,p)::l
end.
Fixpoint add_mult_dev
(rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R :=
match P with
| Pc c =>
let lm := add_pow_list (hd fv) n lm in
mkadd_mult rP c lm
| Pinj j Q =>
add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
let rP := add_mult_dev rP P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd fv) n lm)
end.
Fixpoint mult_dev (P:Pol) (fv : list R) (n:N)
(lm:list (R*positive)) {struct P} : R :=
match P with
| Pc c => mkmult_c c (add_pow_list (hd fv) n lm)
| Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
let rP := mult_dev P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
else
let lmq := add_pow_list (hd fv) n lm in
add_mult_dev rP Q (tail fv) N0 lmq
end.
Definition Pphi_avoid fv P := mult_dev P fv N0 nil.
Fixpoint r_list_pow (l:list (R*positive)) : R :=
match l with
| nil => rI
| cons (r,p) l => pow_pos rmul r p * r_list_pow l
end.
Hypothesis mkpow_spec : forall r p, mkpow r p == pow_pos rmul r p.
Hypothesis mkopp_pow_spec : forall r p, mkopp_pow r p == - (pow_pos rmul r p).
Hypothesis mkmult_pow_spec : forall r x p, mkmult_pow r x p == r * pow_pos rmul x p.
Lemma mkmult_rec_ok : forall lm r, mkmult_rec r lm == r * r_list_pow lm.
Lemma mkmult1_ok : forall lm, mkmult1 lm == r_list_pow lm.
Lemma mkmultm1_ok : forall lm, mkmultm1 lm == - r_list_pow lm.
Lemma r_list_pow_rev : forall l, r_list_pow (rev' l) == r_list_pow l.
Lemma mkmult_c_pos_ok : forall c lm, mkmult_c_pos c lm == [c]* r_list_pow lm.
Lemma mkmult_c_ok : forall c lm, mkmult_c c lm == [c] * r_list_pow lm.
Lemma mkadd_mult_ok : forall rP c lm, mkadd_mult rP c lm == rP + [c]*r_list_pow lm.
Lemma add_pow_list_ok :
forall r n l, r_list_pow (add_pow_list r n l) == pow_N rI rmul r n * r_list_pow l.
Lemma add_mult_dev_ok : forall P rP fv n lm,
add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd fv) n * r_list_pow lm.
Lemma mult_dev_ok : forall P fv n lm,
mult_dev P fv n lm == P@fv * pow_N rI rmul (hd fv) n * r_list_pow lm.
Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv.
End EVALUATION.
Definition Pphi_pow :=
let mkpow x p :=
match p with xH => x | _ => rpow x (Cp_phi (Npos p)) end in
let mkopp_pow x p := ropp (mkpow x p) in
let mkmult_pow r x p := rmul r (mkpow x p) in
Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma local_mkpow_ok r p :
match p with
| xI _ => rpow r (Cp_phi (Npos p))
| xO _ => rpow r (Cp_phi (Npos p))
| 1 => r
end == pow_pos rmul r p.
Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv.
Lemma ring_rw_pow_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_pow l npe.
Fixpoint mkmult_pow (r x:R) (p: positive) {struct p} : R :=
match p with
| xH => r*x
| xO p => mkmult_pow (mkmult_pow r x p) x p
| xI p => mkmult_pow (mkmult_pow (r*x) x p) x p
end.
Definition mkpow x p :=
match p with
| xH => x
| xO p => mkmult_pow x x (Pos.pred_double p)
| xI p => mkmult_pow x x (xO p)
end.
Definition mkopp_pow x p :=
match p with
| xH => -x
| xO p => mkmult_pow (-x) x (Pos.pred_double p)
| xI p => mkmult_pow (-x) x (xO p)
end.
Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma mkmult_pow_ok p r x : mkmult_pow r x p == r * x^p.
Lemma mkpow_ok p x : mkpow x p == x^p.
Lemma mkopp_pow_ok p x : mkopp_pow x p == - x^p.
Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv.
Lemma ring_rw_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_dev l npe.
End MakeRingPol.
Arguments PEO {C}.
Arguments PEI {C}.