Library Coq.omega.PreOmega
Z.div_mod_to_equations, Z.quot_rem_to_equations, Z.to_euclidean_division_equations:
the tactics for preprocessing Z.div and Z.modulo, Z.quot and Z.remModule Z.
Lemma mod_0_r_ext x y : y = 0 -> x mod y = x.
Lemma div_0_r_ext x y : y = 0 -> x / y = 0.
Lemma rem_0_r_ext x y : y = 0 -> Z.rem x y = x.
Lemma quot_0_r_ext x y : y = 0 -> Z.quot x y = 0.
Lemma rem_bound_pos_pos x y : 0 < y -> 0 <= x -> 0 <= Z.rem x y < y.
Lemma rem_bound_neg_pos x y : y < 0 -> 0 <= x -> 0 <= Z.rem x y < -y.
Lemma rem_bound_pos_neg x y : 0 < y -> x <= 0 -> -y < Z.rem x y <= 0.
Lemma rem_bound_neg_neg x y : y < 0 -> x <= 0 -> y < Z.rem x y <= 0.
Ltac div_mod_to_equations_generalize x y :=
pose proof (Z.div_mod x y);
pose proof (Z.mod_pos_bound x y);
pose proof (Z.mod_neg_bound x y);
pose proof (div_0_r_ext x y);
pose proof (mod_0_r_ext x y);
let q := fresh "q" in
let r := fresh "r" in
set (q := x / y) in *;
set (r := x mod y) in *;
clearbody q r.
Ltac quot_rem_to_equations_generalize x y :=
pose proof (Z.quot_rem' x y);
pose proof (rem_bound_pos_pos x y);
pose proof (rem_bound_pos_neg x y);
pose proof (rem_bound_neg_pos x y);
pose proof (rem_bound_neg_neg x y);
pose proof (quot_0_r_ext x y);
pose proof (rem_0_r_ext x y);
let q := fresh "q" in
let r := fresh "r" in
set (q := Z.quot x y) in *;
set (r := Z.rem x y) in *;
clearbody q r.
Ltac div_mod_to_equations_step :=
match goal with
| [ |- context[?x / ?y] ] => div_mod_to_equations_generalize x y
| [ |- context[?x mod ?y] ] => div_mod_to_equations_generalize x y
| [ H : context[?x / ?y] |- _ ] => div_mod_to_equations_generalize x y
| [ H : context[?x mod ?y] |- _ ] => div_mod_to_equations_generalize x y
end.
Ltac quot_rem_to_equations_step :=
match goal with
| [ |- context[Z.quot ?x ?y] ] => quot_rem_to_equations_generalize x y
| [ |- context[Z.rem ?x ?y] ] => quot_rem_to_equations_generalize x y
| [ H : context[Z.quot ?x ?y] |- _ ] => quot_rem_to_equations_generalize x y
| [ H : context[Z.rem ?x ?y] |- _ ] => quot_rem_to_equations_generalize x y
end.
Ltac div_mod_to_equations' := repeat div_mod_to_equations_step.
Ltac quot_rem_to_equations' := repeat quot_rem_to_equations_step.
Ltac euclidean_division_equations_cleanup :=
repeat match goal with
| [ H : ?x = ?x -> _ |- _ ] => specialize (H eq_refl)
| [ H : ?x <> ?x -> _ |- _ ] => clear H
| [ H : ?x < ?x -> _ |- _ ] => clear H
| [ H : ?T -> _, H' : ?T |- _ ] => specialize (H H')
| [ H : ?T -> _, H' : ~?T |- _ ] => clear H
| [ H : ~?T -> _, H' : ?T |- _ ] => clear H
| [ H : ?A -> ?x = ?x -> _ |- _ ] => specialize (fun a => H a eq_refl)
| [ H : ?A -> ?x <> ?x -> _ |- _ ] => clear H
| [ H : ?A -> ?x < ?x -> _ |- _ ] => clear H
| [ H : ?A -> ?B -> _, H' : ?B |- _ ] => specialize (fun a => H a H')
| [ H : ?A -> ?B -> _, H' : ~?B |- _ ] => clear H
| [ H : ?A -> ~?B -> _, H' : ?B |- _ ] => clear H
| [ H : 0 < ?x -> _, H' : ?x < 0 |- _ ] => clear H
| [ H : ?x < 0 -> _, H' : 0 < ?x |- _ ] => clear H
| [ H : ?A -> 0 < ?x -> _, H' : ?x < 0 |- _ ] => clear H
| [ H : ?A -> ?x < 0 -> _, H' : 0 < ?x |- _ ] => clear H
| [ H : 0 <= ?x -> _, H' : ?x < 0 |- _ ] => clear H
| [ H : ?x <= 0 -> _, H' : 0 < ?x |- _ ] => clear H
| [ H : ?A -> 0 <= ?x -> _, H' : ?x < 0 |- _ ] => clear H
| [ H : ?A -> ?x <= 0 -> _, H' : 0 < ?x |- _ ] => clear H
| [ H : 0 < ?x -> _, H' : ?x <= 0 |- _ ] => clear H
| [ H : ?x < 0 -> _, H' : 0 <= ?x |- _ ] => clear H
| [ H : ?A -> 0 < ?x -> _, H' : ?x <= 0 |- _ ] => clear H
| [ H : ?A -> ?x < 0 -> _, H' : 0 <= ?x |- _ ] => clear H
| [ H : 0 <= ?x -> _, H' : ?x <= 0 |- _ ] => specialize (fun pf => H (@Z.eq_le_incl 0 x (eq_sym pf)))
| [ H : ?A -> 0 <= ?x -> _, H' : ?x <= 0 |- _ ] => specialize (fun a pf => H a (@Z.eq_le_incl 0 x (eq_sym pf)))
| [ H : ?x <= 0 -> _, H' : 0 <= ?x |- _ ] => specialize (fun pf => H (@Z.eq_le_incl 0 x pf))
| [ H : ?A -> ?x <= 0 -> _, H' : 0 <= ?x |- _ ] => specialize (fun a pf => H a (@Z.eq_le_incl x 0 pf))
| [ H : ?x < ?y -> _, H' : ?x = ?y |- _ ] => clear H
| [ H : ?x < ?y -> _, H' : ?y = ?x |- _ ] => clear H
| [ H : ?A -> ?x < ?y -> _, H' : ?x = ?y |- _ ] => clear H
| [ H : ?A -> ?x < ?y -> _, H' : ?y = ?x |- _ ] => clear H
| [ H : ?x = ?y -> _, H' : ?x < ?y |- _ ] => clear H
| [ H : ?x = ?y -> _, H' : ?y < ?x |- _ ] => clear H
| [ H : ?A -> ?x = ?y -> _, H' : ?x < ?y |- _ ] => clear H
| [ H : ?A -> ?x = ?y -> _, H' : ?y < ?x |- _ ] => clear H
end.
Ltac div_mod_to_equations := div_mod_to_equations'; euclidean_division_equations_cleanup.
Ltac quot_rem_to_equations := quot_rem_to_equations'; euclidean_division_equations_cleanup.
Ltac to_euclidean_division_equations := div_mod_to_equations'; quot_rem_to_equations'; euclidean_division_equations_cleanup.
End Z.
Require Import ZifyClasses ZifyInst.
Require Zify.
Ltac Zify.zify_internal_to_euclidean_division_equations ::= Z.to_euclidean_division_equations.
Ltac zify := Zify.zify.
Require Import Max Min.