Library Coq.Floats.PrimFloat


Require Import PrimInt63 FloatClass.

Definition of the interface for primitive floating-point arithmetic

This interface provides processor operators for the Binary64 format of the IEEE 754-2008 standard.

Type definition for the co-domain of compare

Variant float_comparison : Set := FEq | FLt | FGt | FNotComparable.

Register float_comparison as kernel.ind_f_cmp.

Register float_class as kernel.ind_f_class.

The main type

float: primitive type for Binary64 floating-point numbers.
Primitive float := #float64_type.
Register float as num.float.type.

Record float_wrapper := wrap_float { float_wrap : float }.
Register wrap_float as num.float.wrap_float.
Definition printer (x : float_wrapper) : float := float_wrap x.
Definition parser (x : float) : float := x.

Syntax support

Module Import PrimFloatNotationsInternalA.
Declare Scope float_scope.
Delimit Scope float_scope with float.
Bind Scope float_scope with float.
End PrimFloatNotationsInternalA.
Number Notation float parser printer : float_scope.

Floating-point operators

Primitive classify := #float64_classify.

Primitive abs := #float64_abs.

Primitive sqrt := #float64_sqrt.

Primitive opp := #float64_opp.

For the record: this is the IEEE754 equality (eqb nan nan = false and eqb +0 -0 = true)
Primitive eqb := #float64_eq.

Primitive ltb := #float64_lt.

Primitive leb := #float64_le.

Primitive compare := #float64_compare.

Boolean Leibniz equality
Module Leibniz.
Primitive eqb := #float64_equal.
Register eqb as num.float.leibniz.eqb.
End Leibniz.

Primitive mul := #float64_mul.

Primitive add := #float64_add.

Primitive sub := #float64_sub.

Primitive div := #float64_div.

Module Import PrimFloatNotationsInternalB.
Notation "- x" := (opp x) : float_scope.
Notation "x =? y" := (eqb x y) (at level 70, no associativity) : float_scope.
Notation "x <? y" := (ltb x y) (at level 70, no associativity) : float_scope.
Notation "x <=? y" := (leb x y) (at level 70, no associativity) : float_scope.
Notation "x ?= y" := (compare x y) (at level 70, no associativity) : float_scope.
Notation "x * y" := (mul x y) : float_scope.
Notation "x + y" := (add x y) : float_scope.
Notation "x - y" := (sub x y) : float_scope.
Notation "x / y" := (div x y) : float_scope.
End PrimFloatNotationsInternalB.

Conversions

of_uint63: convert a primitive unsigned integer into a float value. The value is rounded if need be.
Primitive of_uint63 := #float64_of_uint63.

Specification of normfr_mantissa:
  • If the input is a float value with an absolute value inside [0.5, 1.);
  • Then return its mantissa as a primitive integer. The mantissa will be a 53-bit integer with its most significant bit set to 1;
  • Else return zero.
The sign bit is always ignored.
Primitive normfr_mantissa := #float64_normfr_mantissa.

Exponent manipulation functions

frshiftexp: convert a float to fractional part in [0.5, 1.) and integer part.
Primitive frshiftexp := #float64_frshiftexp.

ldshiftexp: multiply a float by an integral power of 2.
Primitive ldshiftexp := #float64_ldshiftexp.

Predecesor/Successor functions

next_up: return the next float towards positive infinity.
Primitive next_up := #float64_next_up.

next_down: return the next float towards negative infinity.
Primitive next_down := #float64_next_down.

Special values (needed for pretty-printing)

Definition infinity := Eval compute in div (of_uint63 1) (of_uint63 0).
Definition neg_infinity := Eval compute in opp infinity.
Definition nan := Eval compute in div (of_uint63 0) (of_uint63 0).

Register infinity as num.float.infinity.
Register neg_infinity as num.float.neg_infinity.
Register nan as num.float.nan.

Other special values

Definition one := Eval compute in (of_uint63 1).
Definition zero := Eval compute in (of_uint63 0).
Definition neg_zero := Eval compute in (-zero)%float.
Definition two := Eval compute in (of_uint63 2).

Predicates and helper functions

Definition is_nan f := negb (f =? f)%float.

Definition is_zero f := (f =? zero)%float.
Definition is_infinity f := (abs f =? infinity)%float.

Definition is_finite (x : float) := negb (is_nan x || is_infinity x).

get_sign: return true for - sign, false for + sign.
Definition get_sign f :=
  let f := if is_zero f then (one / f)%float else f in
  (f <? zero)%float.

Module Export PrimFloatNotations.
  Local Open Scope float_scope.
  Export PrimFloatNotationsInternalA.
  Export PrimFloatNotationsInternalB.
End PrimFloatNotations.