Home
About Coq
Get Coq
Documentation
Community
The Coq Proof Assistant
Library Coq.Arith.EqNat
Require
Import
PeanoNat
.
Local Open
Scope
nat_scope
.
Equality on natural numbers
Propositional equality
Fixpoint
eq_nat
n
m
:
Prop
:=
match
n
,
m
with
|
O
,
O
=>
True
|
O
,
S
_
=>
False
|
S
_
,
O
=>
False
|
S
n1
,
S
m1
=>
eq_nat
n1
m1
end
.
Theorem
eq_nat_refl
n
:
eq_nat
n
n
.
eq
restricted to
nat
and
eq_nat
are equivalent
Theorem
eq_nat_is_eq
n
m
:
eq_nat
n
m
<->
n
=
m
.
Lemma
eq_eq_nat
n
m
:
n
=
m
->
eq_nat
n
m
.
Lemma
eq_nat_eq
n
m
:
eq_nat
n
m
->
n
=
m
.
Theorem
eq_nat_elim
:
forall
n
(
P
:
nat
->
Prop
),
P
n
->
forall
m
,
eq_nat
n
m
->
P
m
.
Theorem
eq_nat_decide
:
forall
n
m
,
{
eq_nat
n
m
}
+
{
~
eq_nat
n
m
}
.
Navigation
Standard Library
Table of contents
Index