Library Coq.Numbers.NatInt.NZPow
Power Function
Interface of a power function, then its specification on naturals
Module Type Pow (Import A : Typ).
Parameters Inline pow : t -> t -> t.
End Pow.
Module Type PowNotation (A : Typ)(Import B : Pow A).
Infix "^" := pow.
End PowNotation.
Module Type Pow' (A : Typ) := Pow A <+ PowNotation A.
Module Type NZPowSpec (Import A : NZOrdAxiomsSig')(Import B : Pow' A).
#[global]
Declare Instance pow_wd : Proper (eq==>eq==>eq) pow.
Axiom pow_0_r : forall a, a^0 == 1.
Axiom pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b.
Axiom pow_neg_r : forall a b, b<0 -> a^b == 0.
End NZPowSpec.
The above pow_neg_r specification is useless (and trivially
provable) for N. Having it here already allows deriving
some slightly more general statements.
Module Type NZPow (A : NZOrdAxiomsSig) := Pow A <+ NZPowSpec A.
Module Type NZPow' (A : NZOrdAxiomsSig) := Pow' A <+ NZPowSpec A.
Derived properties of power
Module Type NZPowProp
(Import A : NZOrdAxiomsSig')
(Import B : NZPow' A)
(Import C : NZMulOrderProp A).
Global Hint Rewrite pow_0_r pow_succ_r : nz.
Power and basic constants
Lemma pow_0_l : forall a, 0<a -> 0^a == 0.
Lemma pow_0_l' : forall a, a~=0 -> 0^a == 0.
Lemma pow_1_r : forall a, a^1 == a.
Lemma pow_1_l : forall a, 0<=a -> 1^a == 1.
Global Hint Rewrite pow_1_r pow_1_l : nz.
Lemma pow_2_r : forall a, a^2 == a*a.
Global Hint Rewrite pow_2_r : nz.
Power and nullity
Lemma pow_eq_0 : forall a b, 0<=b -> a^b == 0 -> a == 0.
Lemma pow_nonzero : forall a b, a~=0 -> 0<=b -> a^b ~= 0.
Lemma pow_eq_0_iff : forall a b, a^b == 0 <-> b<0 \/ (0<b /\ a==0).
Power and addition, multiplication
Lemma pow_add_r : forall a b c, 0<=b -> 0<=c ->
a^(b+c) == a^b * a^c.
Lemma pow_mul_l : forall a b c,
(a*b)^c == a^c * b^c.
Lemma pow_mul_r : forall a b c, 0<=b -> 0<=c ->
a^(b*c) == (a^b)^c.
Positivity
Lemma pow_nonneg : forall a b, 0<=a -> 0<=a^b.
Lemma pow_pos_nonneg : forall a b, 0<a -> 0<=b -> 0<a^b.
Monotonicity
Lemma pow_lt_mono_l : forall a b c, 0<c -> 0<=a<b -> a^c < b^c.
Lemma pow_le_mono_l : forall a b c, 0<=a<=b -> a^c <= b^c.
Lemma pow_gt_1 : forall a b, 1<a -> (0<b <-> 1<a^b).
Lemma pow_lt_mono_r : forall a b c, 1<a -> 0<=c -> b<c -> a^b < a^c.
NB: since 0^0 > 0^1, the following result isn't valid with a=0
Lemma pow_le_mono_r : forall a b c, 0<a -> b<=c -> a^b <= a^c.
Lemma pow_le_mono : forall a b c d, 0<a<=c -> b<=d ->
a^b <= c^d.
Lemma pow_lt_mono : forall a b c d, 0<a<c -> 0<b<d ->
a^b < c^d.
Injectivity
Lemma pow_inj_l : forall a b c, 0<=a -> 0<=b -> 0<c ->
a^c == b^c -> a == b.
Lemma pow_inj_r : forall a b c, 1<a -> 0<=b -> 0<=c ->
a^b == a^c -> b == c.
Monotonicity results, both ways
Lemma pow_lt_mono_l_iff : forall a b c, 0<=a -> 0<=b -> 0<c ->
(a<b <-> a^c < b^c).
Lemma pow_le_mono_l_iff : forall a b c, 0<=a -> 0<=b -> 0<c ->
(a<=b <-> a^c <= b^c).
Lemma pow_lt_mono_r_iff : forall a b c, 1<a -> 0<=c ->
(b<c <-> a^b < a^c).
Lemma pow_le_mono_r_iff : forall a b c, 1<a -> 0<=c ->
(b<=c <-> a^b <= a^c).
For any a>1, the a^x function is above the identity function
Someday, we should say something about the full Newton formula.
In the meantime, we can at least provide some inequalities about
(a+b)^c.
This upper bound can also be seen as a convexity proof for x^c :
image of (a+b)/2 is below the middle of the images of a and b