Library Coq.QArith.QOrderedType
Module Q_as_DT <: DecidableTypeFull.
Definition t := Q.
Definition eq := Qeq.
Definition eq_equiv := Q_Setoid.
Definition eqb := Qeq_bool.
Definition eqb_eq := Qeq_bool_iff.
Include BackportEq.
eq_refl, eq_sym, eq_trans
Include HasEqBool2Dec.
eq_dec
Note that the last module fulfills by subtyping many other
interfaces, such as DecidableType or EqualityType.
OrderedType structure for rational numbers
Module Q_as_OT <: OrderedTypeFull.
Include Q_as_DT.
Definition lt := Qlt.
Definition le := Qle.
Definition compare := Qcompare.
#[global]
Instance lt_strorder : StrictOrder Qlt.
#[global]
Instance lt_compat : Proper (Qeq==>Qeq==>iff) Qlt.
Definition le_lteq := Qle_lteq.
Definition compare_spec := Qcompare_spec.
End Q_as_OT.
Note that q_order is domain-agnostic: it will not prove
1<=2 or x<=x+x, but rather things like x<=y -> y<=x -> x==y.