Library Coq.setoid_ring.ArithRing


Require Import PeanoNat.
Require Import BinNat.
Require Import Nnat.
Require Export Ring.
Set Implicit Arguments.

Lemma natSRth : semi_ring_theory O (S O) plus mult (@eq nat).

Lemma nat_morph_N :
   semi_morph 0 1 plus mult (eq (A:=nat))
          0%N 1%N N.add N.mul N.eqb N.to_nat.

Ltac natcst t :=
  match isnatcst t with
    true => constr:(N.of_nat t)
  | _ => constr:(InitialRing.NotConstant)
  end.

Ltac Ss_to_add f acc :=
  match f with
  | S ?f1 => Ss_to_add f1 (S acc)
  | _ => constr:((acc + f)%nat)
  end.

Local Definition protected_to_nat := N.to_nat.

Ltac natprering :=
  match goal with
  |- context C [S ?p] =>
    match p with
      O => fail 1
    | p => match isnatcst p with
           | true => fail 1
           | false => let v := Ss_to_add p (S 0) in
                         fold v; natprering
           end
    end
  | _ => change N.to_nat with protected_to_nat
  end.

Ltac natpostring :=
  match goal with
  | |- context [N.to_nat ?x] =>
    let v := eval cbv in (N.to_nat x) in
    change (N.to_nat x) with v;
    natpostring
  | _ => change protected_to_nat with N.to_nat
  end.

Add Ring natr : natSRth
  (morphism nat_morph_N, constants [natcst],
   preprocess [natprering], postprocess [natpostring]).