Library Coq.ssr.ssrunder
Require Import ssrclasses.
Module Type UNDER_REL.
Parameter Under_rel :
forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
Parameter Under_rel_from_rel :
forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
@Under_rel A eqA x y -> eqA x y.
Parameter Under_relE :
forall (A : Type) (eqA : A -> A -> Prop),
@Under_rel A eqA = eqA.
Over_rel, over_rel, over_rel_done: for "by rewrite over_rel"
Parameter Over_rel :
forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
Parameter over_rel :
forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
@Under_rel A eqA x y = @Over_rel A eqA x y.
Parameter over_rel_done :
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Over_rel A eqA x x.
forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
Parameter over_rel :
forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
@Under_rel A eqA x y = @Over_rel A eqA x y.
Parameter over_rel_done :
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Over_rel A eqA x x.
under_rel_done: for Ltac-style over
Parameter under_rel_done :
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Under_rel A eqA x x.
Notation "''Under[' x ]" := (@Under_rel _ _ x _)
(at level 8, format "''Under[' x ]", only printing).
End UNDER_REL.
Module Export Under_rel : UNDER_REL.
Definition Under_rel (A : Type) (eqA : A -> A -> Prop) :=
eqA.
Lemma Under_rel_from_rel :
forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
@Under_rel A eqA x y -> eqA x y.
Lemma Under_relE (A : Type) (eqA : A -> A -> Prop) :
@Under_rel A eqA = eqA.
Definition Over_rel := Under_rel.
Lemma over_rel :
forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
@Under_rel A eqA x y = @Over_rel A eqA x y.
Lemma over_rel_done :
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Over_rel A eqA x x.
Lemma under_rel_done :
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Under_rel A eqA x x.
End Under_rel.
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Under_rel A eqA x x.
Notation "''Under[' x ]" := (@Under_rel _ _ x _)
(at level 8, format "''Under[' x ]", only printing).
End UNDER_REL.
Module Export Under_rel : UNDER_REL.
Definition Under_rel (A : Type) (eqA : A -> A -> Prop) :=
eqA.
Lemma Under_rel_from_rel :
forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
@Under_rel A eqA x y -> eqA x y.
Lemma Under_relE (A : Type) (eqA : A -> A -> Prop) :
@Under_rel A eqA = eqA.
Definition Over_rel := Under_rel.
Lemma over_rel :
forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
@Under_rel A eqA x y = @Over_rel A eqA x y.
Lemma over_rel_done :
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Over_rel A eqA x x.
Lemma under_rel_done :
forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
@Under_rel A eqA x x.
End Under_rel.