Library Coq.PArith.BinPos

Binary positive numbers, operations and properties

Initial development by Pierre Crégut, CNET, Lannion, France
The type positive and its constructors xI and xO and xH are now defined in BinNums.v

Local Open Scope positive_scope.

Every definitions and early properties about positive numbers are placed in a module Pos for qualification purpose.

Definitions of operations, now in a separate file


Include BinPosDef.Pos.

In functor applications that follow, we only inline t and eq


Logical Predicates


Definition eq := @Logic.eq positive.
Definition eq_equiv := @eq_equivalence positive.
Include BackportEq.

Definition lt x y := (x ?= y) = Lt.
Definition gt x y := (x ?= y) = Gt.
Definition le x y := (x ?= y) <> Gt.
Definition ge x y := (x ?= y) <> Lt.

Infix "<=" := le : positive_scope.
Infix "<" := lt : positive_scope.
Infix ">=" := ge : positive_scope.
Infix ">" := gt : positive_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.

Properties of operations over positive numbers

Decidability of equality on binary positive numbers


Lemma eq_dec : forall x y:positive, {x = y} + {x <> y}.

Properties of successor on binary positive numbers

Specification of xI in term of succ and xO


Lemma xI_succ_xO p : p~1 = succ p~0.

Lemma succ_discr p : p <> succ p.

Successor and double

Successor and predecessor


Lemma succ_not_1 p : succ p <> 1.

Lemma pred_succ p : pred (succ p) = p.

Lemma succ_pred_or p : p = 1 \/ succ (pred p) = p.

Lemma succ_pred p : p <> 1 -> succ (pred p) = p.

Injectivity of successor


Lemma succ_inj p q : succ p = succ q -> p = q.

Predecessor to N


Lemma pred_N_succ p : pred_N (succ p) = Npos p.

Properties of addition on binary positive numbers

Specification of succ in term of add


Lemma add_1_r p : p + 1 = succ p.

Lemma add_1_l p : 1 + p = succ p.

Specification of add_carry


Theorem add_carry_spec p q : add_carry p q = succ (p + q).

Commutativity


Theorem add_comm p q : p + q = q + p.

Permutation of add and succ


Theorem add_succ_r p q : p + succ q = succ (p + q).

Theorem add_succ_l p q : succ p + q = succ (p + q).

No neutral elements for addition

Lemma add_no_neutral p q : q + p <> p.

Simplification


Lemma add_carry_add p q r s :
  add_carry p r = add_carry q s -> p + r = q + s.

Lemma add_reg_r p q r : p + r = q + r -> p = q.

Lemma add_reg_l p q r : p + q = p + r -> q = r.

Lemma add_cancel_r p q r : p + r = q + r <-> p = q.

Lemma add_cancel_l p q r : r + p = r + q <-> p = q.

Lemma add_carry_reg_r p q r :
  add_carry p r = add_carry q r -> p = q.

Lemma add_carry_reg_l p q r :
  add_carry p q = add_carry p r -> q = r.

Addition is associative


Theorem add_assoc p q r : p + (q + r) = p + q + r.

Commutation of addition and double

Miscellaneous


Lemma add_diag p : p + p = p~0.

Peano induction and recursion on binary positive positive numbers

The Peano-like recursor function for positive (due to Daniel Schepler)

Fixpoint peano_rect (P:positive->Type) (a:P 1)
  (f: forall p:positive, P p -> P (succ p)) (p:positive) : P p :=
let f2 := peano_rect (fun p:positive => P (p~0)) (f _ a)
  (fun (p:positive) (x:P (p~0)) => f _ (f _ x))
in
match p with
  | q~1 => f _ (f2 q)
  | q~0 => f2 q
  | 1 => a
end.

Theorem peano_rect_succ (P:positive->Type) (a:P 1)
  (f:forall p, P p -> P (succ p)) (p:positive) :
  peano_rect P a f (succ p) = f _ (peano_rect P a f p).

Theorem peano_rect_base (P:positive->Type) (a:P 1)
  (f:forall p, P p -> P (succ p)) :
  peano_rect P a f 1 = a.

Definition peano_rec (P:positive->Set) := peano_rect P.

Peano induction

Definition peano_ind (P:positive->Prop) := peano_rect P.

Peano case analysis

Theorem peano_case :
  forall P:positive -> Prop,
    P 1 -> (forall n:positive, P (succ n)) -> forall p:positive, P p.

Earlier, the Peano-like recursor was built and proved in a way due to Conor McBride, see "The view from the left"

Inductive PeanoView : positive -> Type :=
| PeanoOne : PeanoView 1
| PeanoSucc : forall p, PeanoView p -> PeanoView (succ p).

Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) :=
  match q in PeanoView x return PeanoView (x~0) with
    | PeanoOne => PeanoSucc _ PeanoOne
    | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
  end.

Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) :=
  match q in PeanoView x return PeanoView (x~1) with
    | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
    | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
  end.

Fixpoint peanoView p : PeanoView p :=
  match p return PeanoView p with
    | 1 => PeanoOne
    | p~0 => peanoView_xO p (peanoView p)
    | p~1 => peanoView_xI p (peanoView p)
  end.

Definition PeanoView_iter (P:positive->Type)
  (a:P 1) (f:forall p, P p -> P (succ p)) :=
  (fix iter p (q:PeanoView p) : P p :=
    match q in PeanoView p return P p with
      | PeanoOne => a
      | PeanoSucc _ q => f _ (iter _ q)
    end).

Theorem eq_dep_eq_positive :
  forall (P:positive->Type) (p:positive) (x y:P p),
    eq_dep positive P p x p y -> x = y.

Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.

Lemma peano_equiv (P:positive->Type) (a:P 1) (f:forall p, P p -> P (succ p)) p :
   PeanoView_iter P a f p (peanoView p) = peano_rect P a f p.

Properties of multiplication on binary positive numbers

One is neutral for multiplication


Lemma mul_1_l p : 1 * p = p.

Lemma mul_1_r p : p * 1 = p.

Right reduction properties for multiplication


Lemma mul_xO_r p q : p * q~0 = (p * q)~0.

Lemma mul_xI_r p q : p * q~1 = p + (p * q)~0.

Commutativity of multiplication


Theorem mul_comm p q : p * q = q * p.

Distributivity of multiplication over addition


Theorem mul_add_distr_l p q r :
  p * (q + r) = p * q + p * r.

Theorem mul_add_distr_r p q r :
  (p + q) * r = p * r + q * r.

Associativity of multiplication


Theorem mul_assoc p q r : p * (q * r) = p * q * r.

Successor and multiplication


Lemma mul_succ_l p q : (succ p) * q = q + p * q.

Lemma mul_succ_r p q : p * (succ q) = p + p * q.

Parity properties of multiplication


Lemma mul_xI_mul_xO_discr p q r : p~1 * r <> q~0 * r.

Lemma mul_xO_discr p q : p~0 * q <> q.

Simplification properties of multiplication


Theorem mul_reg_r p q r : p * r = q * r -> p = q.

Theorem mul_reg_l p q r : r * p = r * q -> p = q.

Lemma mul_cancel_r p q r : p * r = q * r <-> p = q.

Lemma mul_cancel_l p q r : r * p = r * q <-> p = q.

Inversion of multiplication


Lemma mul_eq_1_l p q : p * q = 1 -> p = 1.

Lemma mul_eq_1_r p q : p * q = 1 -> q = 1.

Notation mul_eq_1 := mul_eq_1_l.

Square

Properties of iter


Lemma iter_swap_gen A B (f:A->B)(g:A->A)(h:B->B) :
 (forall a, f (g a) = h (f a)) -> forall p a,
 f (iter g a p) = iter h (f a) p.

Theorem iter_swap :
  forall p (A:Type) (f:A -> A) (x:A),
    iter f (f x) p = f (iter f x p).

Theorem iter_succ :
  forall p (A:Type) (f:A -> A) (x:A),
    iter f x (succ p) = f (iter f x p).

Theorem iter_succ_r :
  forall p (A:Type) (f:A -> A) (x:A),
    iter f x (succ p) = iter f (f x) p.

Theorem iter_add :
  forall p q (A:Type) (f:A -> A) (x:A),
    iter f x (p+q) = iter f (iter f x q) p.

Theorem iter_ind (A:Type) (f:A -> A) (a:A) (P:positive -> A -> Prop) :
    P 1 (f a) ->
    (forall p a', P p a' -> P (succ p) (f a')) ->
    forall p, P p (iter f a p).

Theorem iter_invariant :
  forall (p:positive) (A:Type) (f:A -> A) (Inv:A -> Prop),
    (forall x:A, Inv x -> Inv (f x)) ->
    forall x:A, Inv x -> Inv (iter f x p).

Properties of power


Lemma pow_1_r p : p^1 = p.

Lemma pow_succ_r p q : p^(succ q) = p * p^q.

Properties of square


Lemma square_spec p : square p = p * p.

Properties of sub_mask

Properties of boolean comparisons


Theorem eqb_eq p q : (p =? q) = true <-> p=q.

Theorem ltb_lt p q : (p <? q) = true <-> p < q.

Theorem leb_le p q : (p <=? q) = true <-> p <= q.

More about eqb

Properties of comparison on binary positive numbers

First, we express compare_cont in term of compare

Definition switch_Eq c c' :=
 match c' with
  | Eq => c
  | Lt => Lt
  | Gt => Gt
 end.

Lemma compare_cont_spec p q c :
  compare_cont c p q = switch_Eq c (p ?= q).

From this general result, we now describe particular cases of compare_cont p q c = c' :
  • When c=Eq, this is directly compare
  • When c<>Eq, we'll show first that c'<>Eq
  • That leaves only 4 lemmas for c and c' being Lt or Gt
We can express recursive equations for compare

Lemma compare_xO_xO p q : (p~0 ?= q~0) = (p ?= q).

Lemma compare_xI_xI p q : (p~1 ?= q~1) = (p ?= q).

Lemma compare_xI_xO p q :
 (p~1 ?= q~0) = switch_Eq Gt (p ?= q).

Lemma compare_xO_xI p q :
 (p~0 ?= q~1) = switch_Eq Lt (p ?= q).

Global Hint Rewrite compare_xO_xO compare_xI_xI compare_xI_xO compare_xO_xI : compare.

Ltac simpl_compare := autorewrite with compare.
Ltac simpl_compare_in H := autorewrite with compare in H.

Relation between compare and sub_mask

Definition mask2cmp (p:mask) : comparison :=
 match p with
  | IsNul => Eq
  | IsPos _ => Gt
  | IsNeg => Lt
 end.

Lemma compare_sub_mask p q : (p ?= q) = mask2cmp (sub_mask p q).

Alternative characterisation of strict order in term of addition

Lemma lt_iff_add p q : p < q <-> exists r, p + r = q.

Lemma gt_iff_add p q : p > q <-> exists r, q + r = p.

Basic facts about compare_cont
Basic facts about compare
More properties about compare and boolean comparisons, including compare_spec and lt_irrefl and lt_eq_cases.

Include BoolOrderFacts.

Definition le_lteq := lt_eq_cases.

Facts about gt and ge

The predicates lt and le are now favored in the statements of theorems, the use of gt and ge is hence not recommended. We provide here the bare minimal results to related them with lt and le.

Lemma gt_lt_iff p q : p > q <-> q < p.

Lemma gt_lt p q : p > q -> q < p.

Lemma lt_gt p q : p < q -> q > p.

Lemma ge_le_iff p q : p >= q <-> q <= p.

Lemma ge_le p q : p >= q -> q <= p.

Lemma le_ge p q : p <= q -> q >= p.

Comparison and the successor

1 is the least positive number


Lemma le_1_l p : 1 <= p.

Lemma nlt_1_r p : ~ p < 1.

Lemma lt_1_succ p : 1 < succ p.

Properties of the order


Lemma le_nlt p q : p <= q <-> ~ q < p.

Lemma lt_nle p q : p < q <-> ~ q <= p.

Lemma lt_le_incl p q : p<q -> p<=q.

Lemma lt_lt_succ n m : n < m -> n < succ m.

Lemma succ_lt_mono n m : n < m <-> succ n < succ m.

Lemma succ_le_mono n m : n <= m <-> succ n <= succ m.

Lemma lt_trans n m p : n < m -> m < p -> n < p.

Theorem lt_ind : forall (A : positive -> Prop) (n : positive),
  A (succ n) ->
    (forall m : positive, n < m -> A m -> A (succ m)) ->
      forall m : positive, n < m -> A m.

#[global]
Instance lt_strorder : StrictOrder lt.

#[global]
Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) lt.

Lemma lt_total p q : p < q \/ p = q \/ q < p.

Lemma le_refl p : p <= p.

Lemma le_lt_trans n m p : n <= m -> m < p -> n < p.

Lemma lt_le_trans n m p : n < m -> m <= p -> n < p.

Lemma le_trans n m p : n <= m -> m <= p -> n <= p.

Lemma le_succ_l n m : succ n <= m <-> n < m.

Lemma le_antisym p q : p <= q -> q <= p -> p = q.

#[global]
Instance le_preorder : PreOrder le.

#[global]
Instance le_partorder : PartialOrder Logic.eq le.

Comparison and addition

Order and addition

Comparison and multiplication

Order and multiplication

Properties of subtraction on binary positive numbers


Lemma sub_1_r p : sub p 1 = pred p.

Lemma pred_sub p : pred p = sub p 1.

Theorem sub_succ_r p q : p - (succ q) = pred (p - q).

Properties of subtraction without underflow

Recursive equations for sub
Properties of subtraction with underflow

Lemma sub_mask_neg_iff' p q : sub_mask p q = IsNeg <-> p < q.

Lemma sub_mask_neg p q : p<q -> sub_mask p q = IsNeg.

Lemma sub_le p q : p<=q -> p-q = 1.

Lemma sub_lt p q : p<q -> p-q = 1.

Lemma sub_diag p : p-p = 1.

Results concerning size and size_nat


Lemma size_nat_monotone p q : p<q -> (size_nat p <= size_nat q)%nat.

Lemma size_gt p : p < 2^(size p).

Lemma size_le p : 2^(size p) <= p~0.

Properties of min and max

First, the specification

Lemma max_l : forall x y, y<=x -> max x y = x.

Lemma max_r : forall x y, x<=y -> max x y = y.

Lemma min_l : forall x y, x<=y -> min x y = x.

Lemma min_r : forall x y, y<=x -> min x y = y.

We hence obtain all the generic properties of min and max.

Include UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.

Ltac order := Private_Tac.order.

Minimum, maximum and constant one

Lemma max_1_l n : max 1 n = n.

Lemma max_1_r n : max n 1 = n.

Lemma min_1_l n : min 1 n = 1.

Lemma min_1_r n : min n 1 = 1.

Minimum, maximum and operations (consequences of monotonicity)

Lemma succ_max_distr n m : succ (max n m) = max (succ n) (succ m).

Lemma succ_min_distr n m : succ (min n m) = min (succ n) (succ m).

Lemma add_max_distr_l n m p : max (p + n) (p + m) = p + max n m.

Lemma add_max_distr_r n m p : max (n + p) (m + p) = max n m + p.

Lemma add_min_distr_l n m p : min (p + n) (p + m) = p + min n m.

Lemma add_min_distr_r n m p : min (n + p) (m + p) = min n m + p.

Lemma mul_max_distr_l n m p : max (p * n) (p * m) = p * max n m.

Lemma mul_max_distr_r n m p : max (n * p) (m * p) = max n m * p.

Lemma mul_min_distr_l n m p : min (p * n) (p * m) = p * min n m.

Lemma mul_min_distr_r n m p : min (n * p) (m * p) = min n m * p.

Results concerning iter_op


Lemma iter_op_succ : forall A (op:A->A->A),
 (forall x y z, op x (op y z) = op (op x y) z) ->
 forall p a,
 iter_op op (succ p) a = op a (iter_op op p a).

Results about of_nat and of_succ_nat

Correctness proofs for the square root function

Correctness proofs for the gcd function

The first component of ggcd is gcd

Lemma ggcdn_gcdn : forall n a b,
  fst (ggcdn n a b) = gcdn n a b.

Lemma ggcd_gcd : forall a b, fst (ggcd a b) = gcd a b.

The other components of ggcd are indeed the correct factors.

Ltac destr_pggcdn IHn :=
 match goal with |- context [ ggcdn _ ?x ?y ] =>
  generalize (IHn x y); destruct ggcdn as (?g,(?u,?v)); simpl
 end.

Lemma ggcdn_correct_divisors : forall n a b,
  let '(g,(aa,bb)) := ggcdn n a b in
  a = g*aa /\ b = g*bb.

Lemma ggcd_correct_divisors : forall a b,
  let '(g,(aa,bb)) := ggcd a b in
  a=g*aa /\ b=g*bb.

We can use this fact to prove a part of the gcd correctness

Lemma gcd_divide_l : forall a b, (gcd a b | a).

Lemma gcd_divide_r : forall a b, (gcd a b | b).

We now prove directly that gcd is the greatest amongst common divisors

Lemma gcdn_greatest : forall n a b, (size_nat a + size_nat b <= n)%nat ->
                               forall p, (p|a) -> (p|b) -> (p|gcdn n a b).

Lemma gcd_greatest : forall a b p, (p|a) -> (p|b) -> (p|gcd a b).

As a consequence, the rests after division by gcd are relatively prime

Lemma ggcd_greatest : forall a b,
 let (aa,bb) := snd (ggcd a b) in
 forall p, (p|aa) -> (p|bb) -> p=1.

End Pos.

Bind Scope positive_scope with Pos.t positive.

Exportation of notations

Number Notation positive Pos.of_num_int Pos.to_num_uint : positive_scope.

Infix "+" := Pos.add : positive_scope.
Infix "-" := Pos.sub : positive_scope.
Infix "*" := Pos.mul : positive_scope.
Infix "^" := Pos.pow : positive_scope.
Infix "?=" := Pos.compare (at level 70, no associativity) : positive_scope.
Infix "=?" := Pos.eqb (at level 70, no associativity) : positive_scope.
Infix "<=?" := Pos.leb (at level 70, no associativity) : positive_scope.
Infix "<?" := Pos.ltb (at level 70, no associativity) : positive_scope.
Infix "<=" := Pos.le : positive_scope.
Infix "<" := Pos.lt : positive_scope.
Infix ">=" := Pos.ge : positive_scope.
Infix ">" := Pos.gt : positive_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.

Notation "( p | q )" := (Pos.divide p q) (at level 0) : positive_scope.

Compatibility notations

Notation positive := positive (only parsing).
Notation positive_rect := positive_rect (only parsing).
Notation positive_rec := positive_rec (only parsing).
Notation positive_ind := positive_ind (only parsing).
Notation xI := xI (only parsing).
Notation xO := xO (only parsing).
Notation xH := xH (only parsing).

Notation IsNul := Pos.IsNul (only parsing).
Notation IsPos := Pos.IsPos (only parsing).
Notation IsNeg := Pos.IsNeg (only parsing).

Notation Pplus := Pos.add (only parsing).
Notation Pplus_carry := Pos.add_carry (only parsing).
Notation Pmult_nat := (Pos.iter_op plus) (only parsing).
Notation nat_of_P := Pos.to_nat (only parsing).
Notation P_of_succ_nat := Pos.of_succ_nat (only parsing).
Notation Pdouble_minus_one := Pos.pred_double (only parsing).
Notation positive_mask := Pos.mask (only parsing).
Notation positive_mask_rect := Pos.mask_rect (only parsing).
Notation positive_mask_ind := Pos.mask_ind (only parsing).
Notation positive_mask_rec := Pos.mask_rec (only parsing).
Notation Pdouble_plus_one_mask := Pos.succ_double_mask (only parsing).
Notation Pdouble_minus_two := Pos.double_pred_mask (only parsing).
Notation Pminus_mask := Pos.sub_mask (only parsing).
Notation Pminus_mask_carry := Pos.sub_mask_carry (only parsing).
Notation Pminus := Pos.sub (only parsing).
Notation Pmult := Pos.mul (only parsing).
Notation iter_pos := @Pos.iter (only parsing).
Notation Psize := Pos.size_nat (only parsing).
Notation Psize_pos := Pos.size (only parsing).
Notation Pcompare x y m := (Pos.compare_cont m x y) (only parsing).
Notation positive_eq_dec := Pos.eq_dec (only parsing).
Notation xI_succ_xO := Pos.xI_succ_xO (only parsing).
Notation Psucc_o_double_minus_one_eq_xO :=
 Pos.succ_pred_double (only parsing).
Notation Pdouble_minus_one_o_succ_eq_xI :=
 Pos.pred_double_succ (only parsing).
Notation xO_succ_permute := Pos.double_succ (only parsing).
Notation double_moins_un_xO_discr :=
 Pos.pred_double_xO_discr (only parsing).
Notation Psucc_not_one := Pos.succ_not_1 (only parsing).
Notation Psucc_pred := Pos.succ_pred_or (only parsing).
Notation Pplus_carry_spec := Pos.add_carry_spec (only parsing).
Notation Pplus_comm := Pos.add_comm (only parsing).
Notation Pplus_succ_permute_r := Pos.add_succ_r (only parsing).
Notation Pplus_succ_permute_l := Pos.add_succ_l (only parsing).
Notation Pplus_no_neutral := Pos.add_no_neutral (only parsing).
Notation Pplus_carry_plus := Pos.add_carry_add (only parsing).
Notation Pplus_reg_r := Pos.add_reg_r (only parsing).
Notation Pplus_reg_l := Pos.add_reg_l (only parsing).
Notation Pplus_carry_reg_r := Pos.add_carry_reg_r (only parsing).
Notation Pplus_carry_reg_l := Pos.add_carry_reg_l (only parsing).
Notation Pplus_assoc := Pos.add_assoc (only parsing).
Notation Pplus_xO := Pos.add_xO (only parsing).
Notation Pplus_xI_double_minus_one := Pos.add_xI_pred_double (only parsing).
Notation Pplus_xO_double_minus_one := Pos.add_xO_pred_double (only parsing).
Notation Pplus_diag := Pos.add_diag (only parsing).
Notation PeanoView := Pos.PeanoView (only parsing).
Notation PeanoOne := Pos.PeanoOne (only parsing).
Notation PeanoSucc := Pos.PeanoSucc (only parsing).
Notation PeanoView_rect := Pos.PeanoView_rect (only parsing).
Notation PeanoView_ind := Pos.PeanoView_ind (only parsing).
Notation PeanoView_rec := Pos.PeanoView_rec (only parsing).
Notation peanoView_xO := Pos.peanoView_xO (only parsing).
Notation peanoView_xI := Pos.peanoView_xI (only parsing).
Notation peanoView := Pos.peanoView (only parsing).
Notation PeanoView_iter := Pos.PeanoView_iter (only parsing).
Notation eq_dep_eq_positive := Pos.eq_dep_eq_positive (only parsing).
Notation PeanoViewUnique := Pos.PeanoViewUnique (only parsing).
Notation Prect := Pos.peano_rect (only parsing).
Notation Prect_succ := Pos.peano_rect_succ (only parsing).
Notation Prect_base := Pos.peano_rect_base (only parsing).
Notation Prec := Pos.peano_rec (only parsing).
Notation Pind := Pos.peano_ind (only parsing).
Notation Pcase := Pos.peano_case (only parsing).
Notation Pmult_1_r := Pos.mul_1_r (only parsing).
Notation Pmult_Sn_m := Pos.mul_succ_l (only parsing).
Notation Pmult_xO_permute_r := Pos.mul_xO_r (only parsing).
Notation Pmult_xI_permute_r := Pos.mul_xI_r (only parsing).
Notation Pmult_comm := Pos.mul_comm (only parsing).
Notation Pmult_plus_distr_l := Pos.mul_add_distr_l (only parsing).
Notation Pmult_plus_distr_r := Pos.mul_add_distr_r (only parsing).
Notation Pmult_assoc := Pos.mul_assoc (only parsing).
Notation Pmult_xI_mult_xO_discr := Pos.mul_xI_mul_xO_discr (only parsing).
Notation Pmult_xO_discr := Pos.mul_xO_discr (only parsing).
Notation Pmult_reg_r := Pos.mul_reg_r (only parsing).
Notation Pmult_reg_l := Pos.mul_reg_l (only parsing).
Notation Pmult_1_inversion_l := Pos.mul_eq_1_l (only parsing).
Notation iter_pos_swap_gen := Pos.iter_swap_gen (only parsing).
Notation iter_pos_swap := Pos.iter_swap (only parsing).
Notation iter_pos_succ := Pos.iter_succ (only parsing).
Notation iter_pos_plus := Pos.iter_add (only parsing).
Notation iter_pos_invariant := Pos.iter_invariant (only parsing).
Notation Pcompare_refl_id := Pos.compare_cont_refl (only parsing).
Notation Pcompare_eq_iff := Pos.compare_eq_iff (only parsing).
Notation Pcompare_Gt_Lt := Pos.compare_cont_Gt_Lt (only parsing).
Notation Pcompare_eq_Lt := Pos.compare_lt_iff (only parsing).
Notation Pcompare_Lt_Gt := Pos.compare_cont_Lt_Gt (only parsing).

Notation Pcompare_antisym := Pos.compare_cont_antisym (only parsing).
Notation ZC1 := Pos.gt_lt (only parsing).
Notation ZC2 := Pos.lt_gt (only parsing).
Notation Pcompare_p_Sp := Pos.lt_succ_diag_r (only parsing).
Notation Pcompare_1 := Pos.nlt_1_r (only parsing).
Notation Plt_1 := Pos.nlt_1_r (only parsing).
Notation Pplus_compare_mono_l := Pos.add_compare_mono_l (only parsing).
Notation Pplus_compare_mono_r := Pos.add_compare_mono_r (only parsing).
Notation Pplus_lt_mono_l := Pos.add_lt_mono_l (only parsing).
Notation Pplus_lt_mono_r := Pos.add_lt_mono_r (only parsing).
Notation Pplus_lt_mono := Pos.add_lt_mono (only parsing).
Notation Pplus_le_mono_l := Pos.add_le_mono_l (only parsing).
Notation Pplus_le_mono_r := Pos.add_le_mono_r (only parsing).
Notation Pplus_le_mono := Pos.add_le_mono (only parsing).
Notation Pmult_compare_mono_l := Pos.mul_compare_mono_l (only parsing).
Notation Pmult_compare_mono_r := Pos.mul_compare_mono_r (only parsing).
Notation Pmult_lt_mono_l := Pos.mul_lt_mono_l (only parsing).
Notation Pmult_lt_mono_r := Pos.mul_lt_mono_r (only parsing).
Notation Pmult_lt_mono := Pos.mul_lt_mono (only parsing).
Notation Pmult_le_mono_l := Pos.mul_le_mono_l (only parsing).
Notation Pmult_le_mono_r := Pos.mul_le_mono_r (only parsing).
Notation Pmult_le_mono := Pos.mul_le_mono (only parsing).
Notation Plt_plus_r := Pos.lt_add_r (only parsing).
Notation Plt_not_plus_l := Pos.lt_not_add_l (only parsing).
Notation Pminus_mask_succ_r := Pos.sub_mask_succ_r (only parsing).
Notation Pminus_mask_carry_spec := Pos.sub_mask_carry_spec (only parsing).
Notation Pminus_succ_r := Pos.sub_succ_r (only parsing).
Notation Pminus_mask_diag := Pos.sub_mask_diag (only parsing).

Notation Pplus_minus_eq := Pos.add_sub (only parsing).
Notation Pmult_minus_distr_l := Pos.mul_sub_distr_l (only parsing).
Notation Pminus_lt_mono_l := Pos.sub_lt_mono_l (only parsing).
Notation Pminus_compare_mono_l := Pos.sub_compare_mono_l (only parsing).
Notation Pminus_compare_mono_r := Pos.sub_compare_mono_r (only parsing).
Notation Pminus_lt_mono_r := Pos.sub_lt_mono_r (only parsing).
Notation Pminus_decr := Pos.sub_decr (only parsing).
Notation Pminus_xI_xI := Pos.sub_xI_xI (only parsing).
Notation Pplus_minus_assoc := Pos.add_sub_assoc (only parsing).
Notation Pminus_plus_distr := Pos.sub_add_distr (only parsing).
Notation Pminus_minus_distr := Pos.sub_sub_distr (only parsing).
Notation Pminus_mask_Lt := Pos.sub_mask_neg (only parsing).
Notation Pminus_Lt := Pos.sub_lt (only parsing).
Notation Pminus_Eq := Pos.sub_diag (only parsing).
Notation Psize_monotone := Pos.size_nat_monotone (only parsing).
Notation Psize_pos_gt := Pos.size_gt (only parsing).
Notation Psize_pos_le := Pos.size_le (only parsing).

More complex compatibility facts, expressed as lemmas (to preserve scopes for instance)
Discontinued results of little interest and little/zero use in user contributions:
Pplus_carry_no_neutral Pplus_carry_pred_eq_plus Pcompare_not_Eq Pcompare_Lt_Lt Pcompare_Lt_eq_Lt Pcompare_Gt_Gt Pcompare_Gt_eq_Gt Psucc_lt_compat Psucc_le_compat ZC3 Pcompare_p_Sq Pminus_mask_carry_diag Pminus_mask_IsNeg ZL10 ZL11 double_eq_zero_inversion double_plus_one_zero_discr double_plus_one_eq_one_inversion double_eq_one_discr
Infix "/" := Pdiv2 : positive_scope.
Old stuff, to remove someday

Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.

Incompatibilities :
  • (_ ?= _)%positive expects no arg now, and designates Pos.compare which is convertible but syntactically distinct to Pos.compare_cont .. .. Eq.
  • Pmult_nat cannot be unfolded (unfold Pos.iter_op instead).
Re-export the notation for those who just Import BinPos
Number Notation positive Pos.of_num_int Pos.to_num_hex_uint : hex_positive_scope.
Number Notation positive Pos.of_num_int Pos.to_num_uint : positive_scope.