Library Coq.Strings.PrimStringAxioms
Require Import Uint63.
Require Import ZArith.
Require Import PrimString.
Definition char63_valid (c : char63) :=
(c land 255 = c)%uint63.
Require Import ZArith.
Require Import PrimString.
Definition char63_valid (c : char63) :=
(c land 255 = c)%uint63.
Definition to_list (s : string) : list char63 :=
List.map (fun i => get s (of_nat i)) (List.seq 0 (to_nat (length s))).
Fixpoint of_list (cs : list char63) : string :=
match cs with
| nil => ""%pstring
| cons c cs => cat (make 1 c) (of_list cs)
end.
Axiom of_to_list :
forall (s : string),
of_list (to_list s) = s.
Axiom to_list_length :
forall (s : string),
List.length (to_list s) <= to_nat max_length.
Axiom to_list_char63_valid :
forall (s : string),
List.Forall char63_valid (to_list s).
Axiom length_spec :
forall (s : string),
to_nat (length s) = List.length (to_list s).
Axiom get_spec :
forall (s : string) (i : int),
get s i = List.nth (to_nat i) (to_list s) 0%uint63.
Axiom make_spec :
forall (i : int) (c : char63),
to_list (make i c) =
List.repeat (c land 255)%uint63 (Nat.min (to_nat i) (to_nat max_length)).
Axiom sub_spec :
forall (s : string) (off len : int),
to_list (sub s off len) =
List.firstn (to_nat len) (List.skipn (to_nat off) (to_list s)).
Axiom cat_spec :
forall (s1 s2 : string),
to_list (cat s1 s2) =
List.firstn (to_nat max_length) (to_list s1 ++ to_list s2).
Notation char63_compare := PrimInt63.compare (only parsing).
Axiom compare_spec :
forall (s1 s2 : string),
compare s1 s2 =
List.list_compare char63_compare (to_list s1) (to_list s2).