Library Coq.Init.Nat
Peano natural numbers, definitions of operations
Definition succ := S.
Definition pred n :=
match n with
| 0 => n
| S u => u
end.
Fixpoint add n m :=
match n with
| 0 => m
| S p => S (p + m)
end
where "n + m" := (add n m) : nat_scope.
Definition double n := n + n.
Fixpoint mul n m :=
match n with
| 0 => 0
| S p => m + p * m
end
where "n * m" := (mul n m) : nat_scope.
Truncated subtraction: n-m is 0 if n<=m
Fixpoint sub n m :=
match n, m with
| S k, S l => k - l
| _, _ => n
end
where "n - m" := (sub n m) : nat_scope.
Fixpoint eqb n m : bool :=
match n, m with
| 0, 0 => true
| 0, S _ => false
| S _, 0 => false
| S n', S m' => eqb n' m'
end.
Fixpoint leb n m : bool :=
match n, m with
| 0, _ => true
| _, 0 => false
| S n', S m' => leb n' m'
end.
Definition ltb n m := leb (S n) m.
Infix "=?" := eqb (at level 70) : nat_scope.
Infix "<=?" := leb (at level 70) : nat_scope.
Infix "<?" := ltb (at level 70) : nat_scope.
Fixpoint compare n m : comparison :=
match n, m with
| 0, 0 => Eq
| 0, S _ => Lt
| S _, 0 => Gt
| S n', S m' => compare n' m'
end.
Infix "?=" := compare (at level 70) : nat_scope.
Fixpoint max n m :=
match n, m with
| 0, _ => m
| S n', 0 => n
| S n', S m' => S (max n' m')
end.
Fixpoint min n m :=
match n, m with
| 0, _ => 0
| S n', 0 => 0
| S n', S m' => S (min n' m')
end.
Fixpoint even n : bool :=
match n with
| 0 => true
| 1 => false
| S (S n') => even n'
end.
Definition odd n := negb (even n).
Fixpoint pow n m :=
match m with
| 0 => 1
| S m => n * (n^m)
end
where "n ^ m" := (pow n m) : nat_scope.
tail_addmul r n m is r + n * m.
Fixpoint tail_addmul r n m :=
match n with
| O => r
| S n => tail_addmul (tail_add m r) n m
end.
Definition tail_mul n m := tail_addmul 0 n m.
Fixpoint of_uint_acc (d:Decimal.uint)(acc:nat) :=
match d with
| Decimal.Nil => acc
| Decimal.D0 d => of_uint_acc d (tail_mul ten acc)
| Decimal.D1 d => of_uint_acc d (S (tail_mul ten acc))
| Decimal.D2 d => of_uint_acc d (S (S (tail_mul ten acc)))
| Decimal.D3 d => of_uint_acc d (S (S (S (tail_mul ten acc))))
| Decimal.D4 d => of_uint_acc d (S (S (S (S (tail_mul ten acc)))))
| Decimal.D5 d => of_uint_acc d (S (S (S (S (S (tail_mul ten acc))))))
| Decimal.D6 d => of_uint_acc d (S (S (S (S (S (S (tail_mul ten acc)))))))
| Decimal.D7 d => of_uint_acc d (S (S (S (S (S (S (S (tail_mul ten acc))))))))
| Decimal.D8 d => of_uint_acc d (S (S (S (S (S (S (S (S (tail_mul ten acc)))))))))
| Decimal.D9 d => of_uint_acc d (S (S (S (S (S (S (S (S (S (tail_mul ten acc))))))))))
end.
Definition of_uint (d:Decimal.uint) := of_uint_acc d O.
Fixpoint to_little_uint n acc :=
match n with
| O => acc
| S n => to_little_uint n (Decimal.Little.succ acc)
end.
Definition to_uint n :=
Decimal.rev (to_little_uint n Decimal.zero).
Definition of_int (d:Decimal.int) : option nat :=
match Decimal.norm d with
| Decimal.Pos u => Some (of_uint u)
| _ => None
end.
Definition to_int n := Decimal.Pos (to_uint n).
Euclidean division
Fixpoint divmod x y q u :=
match x with
| 0 => (q,u)
| S x' => match u with
| 0 => divmod x' y (S q) y
| S u' => divmod x' y q u'
end
end.
Definition div x y :=
match y with
| 0 => y
| S y' => fst (divmod x y' 0 y')
end.
Definition modulo x y :=
match y with
| 0 => y
| S y' => y' - snd (divmod x y' 0 y')
end.
Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity) : nat_scope.
Greatest common divisor
Square root
Fixpoint sqrt_iter k p q r :=
match k with
| O => p
| S k' => match r with
| O => sqrt_iter k' (S p) (S (S q)) (S (S q))
| S r' => sqrt_iter k' p q r'
end
end.
Definition sqrt n := sqrt_iter n 0 0 0.
Log2
10 9 8 7 * 6 * 5 ... 4 3 * 2 * 1 * * 0 * * *
Fixpoint log2_iter k p q r :=
match k with
| O => p
| S k' => match r with
| O => log2_iter k' (S p) (S q) q
| S r' => log2_iter k' p (S q) r'
end
end.
Definition log2 n := log2_iter (pred n) 0 1 0.
Iterator on natural numbers
Bitwise operations
We provide here some bitwise operations for unary numbers.
Some might be really naive, they are just there for fullfiling
the same interface as other for natural representations. As
soon as binary representations such as NArith are available,
it is clearly better to convert to/from them and use their ops.
Fixpoint div2 n :=
match n with
| 0 => 0
| S 0 => 0
| S (S n') => S (div2 n')
end.
Fixpoint testbit a n : bool :=
match n with
| 0 => odd a
| S n => testbit (div2 a) n
end.
Definition shiftl a := nat_rect _ a (fun _ => double).
Definition shiftr a := nat_rect _ a (fun _ => div2).
Fixpoint bitwise (op:bool->bool->bool) n a b :=
match n with
| 0 => 0
| S n' =>
(if op (odd a) (odd b) then 1 else 0) +
2*(bitwise op n' (div2 a) (div2 b))
end.
Definition land a b := bitwise andb a a b.
Definition lor a b := bitwise orb (max a b) a b.
Definition ldiff a b := bitwise (fun b b' => andb b (negb b')) a a b.
Definition lxor a b := bitwise xorb (max a b) a b.