Library Coq.Lists.Streams
Set Implicit Arguments.
Streams
Section Streams.
Variable A : Type.
CoInductive Stream : Type :=
Cons : A -> Stream -> Stream.
Definition hd (x:Stream) := match x with
| Cons a _ => a
end.
Definition tl (x:Stream) := match x with
| Cons _ s => s
end.
Fixpoint Str_nth_tl (n:nat) (s:Stream) : Stream :=
match n with
| O => s
| S m => Str_nth_tl m (tl s)
end.
Definition Str_nth (n:nat) (s:Stream) : A := hd (Str_nth_tl n s).
Lemma unfold_Stream :
forall x:Stream, x = match x with
| Cons a s => Cons a s
end.
Lemma tl_nth_tl :
forall (n:nat) (s:Stream), tl (Str_nth_tl n s) = Str_nth_tl n (tl s).
Hint Resolve tl_nth_tl: datatypes.
Lemma Str_nth_tl_plus :
forall (n m:nat) (s:Stream),
Str_nth_tl n (Str_nth_tl m s) = Str_nth_tl (n + m) s.
Lemma Str_nth_plus :
forall (n m:nat) (s:Stream), Str_nth n (Str_nth_tl m s) = Str_nth (n + m) s.
Extensional Equality between two streams
CoInductive EqSt (s1 s2: Stream) : Prop :=
eqst :
hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
A coinduction principle
Ltac coinduction proof :=
cofix proof; intros; constructor;
[ clear proof | try (apply proof; clear proof) ].
Extensional equality is an equivalence relation
Theorem EqSt_reflex : forall s:Stream, EqSt s s.
Theorem sym_EqSt : forall s1 s2:Stream, EqSt s1 s2 -> EqSt s2 s1.
Theorem trans_EqSt :
forall s1 s2 s3:Stream, EqSt s1 s2 -> EqSt s2 s3 -> EqSt s1 s3.
The definition given is equivalent to require the elements at each
position to be equal
Theorem eqst_ntheq :
forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2.
Theorem ntheq_eqst :
forall s1 s2:Stream,
(forall n:nat, Str_nth n s1 = Str_nth n s2) -> EqSt s1 s2.
Section Stream_Properties.
Variable P : Stream -> Prop.
Inductive Exists ( x: Stream ) : Prop :=
| Here : P x -> Exists x
| Further : Exists (tl x) -> Exists x.
CoInductive ForAll (x: Stream) : Prop :=
HereAndFurther : P x -> ForAll (tl x) -> ForAll x.
Lemma ForAll_Str_nth_tl : forall m x, ForAll x -> ForAll (Str_nth_tl m x).
Section Co_Induction_ForAll.
Variable Inv : Stream -> Prop.
Hypothesis InvThenP : forall x:Stream, Inv x -> P x.
Hypothesis InvIsStable : forall x:Stream, Inv x -> Inv (tl x).
Theorem ForAll_coind : forall x:Stream, Inv x -> ForAll x.
End Co_Induction_ForAll.
End Stream_Properties.
End Streams.
Section Map.
Variables A B : Type.
Variable f : A -> B.
CoFixpoint map (s:Stream A) : Stream B := Cons (f (hd s)) (map (tl s)).
Lemma Str_nth_tl_map : forall n s, Str_nth_tl n (map s)= map (Str_nth_tl n s).
Lemma Str_nth_map : forall n s, Str_nth n (map s)= f (Str_nth n s).
Lemma ForAll_map : forall (P:Stream B -> Prop) (S:Stream A), ForAll (fun s => P
(map s)) S <-> ForAll P (map S).
Lemma Exists_map : forall (P:Stream B -> Prop) (S:Stream A), Exists (fun s => P
(map s)) S -> Exists P (map S).
End Map.
Section Constant_Stream.
Variable A : Type.
Variable a : A.
CoFixpoint const : Stream A := Cons a const.
End Constant_Stream.
Section Zip.
Variable A B C : Type.
Variable f: A -> B -> C.
CoFixpoint zipWith (a:Stream A) (b:Stream B) : Stream C :=
Cons (f (hd a) (hd b)) (zipWith (tl a) (tl b)).
Lemma Str_nth_tl_zipWith : forall n (a:Stream A) (b:Stream B),
Str_nth_tl n (zipWith a b)= zipWith (Str_nth_tl n a) (Str_nth_tl n b).
Lemma Str_nth_zipWith : forall n (a:Stream A) (b:Stream B), Str_nth n (zipWith a
b)= f (Str_nth n a) (Str_nth n b).
End Zip.
Unset Implicit Arguments.