Library Coq.Sets.Uniset
Sets as characteristic functions
Require Import Bool Permut.
Set Implicit Arguments.
Section defs.
Variable A : Set.
Variable eqA : A -> A -> Prop.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Inductive uniset : Set :=
Charac : (A -> bool) -> uniset.
Definition charac (s:uniset) (a:A) : bool := let (f) := s in f a.
Definition Emptyset := Charac (fun a:A => false).
Definition Fullset := Charac (fun a:A => true).
Definition Singleton (a:A) :=
Charac
(fun a':A =>
match eqA_dec a a' with
| left h => true
| right h => false
end).
Definition In (s:uniset) (a:A) : Prop := charac s a = true.
Hint Unfold In.
uniset inclusion
uniset equality
Definition seq (s1 s2:uniset) := forall a:A, charac s1 a = charac s2 a.
Hint Unfold seq.
Lemma leb_refl : forall b:bool, leb b b.
Hint Resolve leb_refl.
Lemma incl_left : forall s1 s2:uniset, seq s1 s2 -> incl s1 s2.
Lemma incl_right : forall s1 s2:uniset, seq s1 s2 -> incl s2 s1.
Lemma seq_refl : forall x:uniset, seq x x.
Hint Resolve seq_refl.
Lemma seq_trans : forall x y z:uniset, seq x y -> seq y z -> seq x z.
Lemma seq_sym : forall x y:uniset, seq x y -> seq y x.
Hint Unfold seq.
Lemma leb_refl : forall b:bool, leb b b.
Hint Resolve leb_refl.
Lemma incl_left : forall s1 s2:uniset, seq s1 s2 -> incl s1 s2.
Lemma incl_right : forall s1 s2:uniset, seq s1 s2 -> incl s2 s1.
Lemma seq_refl : forall x:uniset, seq x x.
Hint Resolve seq_refl.
Lemma seq_trans : forall x y z:uniset, seq x y -> seq y z -> seq x z.
Lemma seq_sym : forall x y:uniset, seq x y -> seq y x.
uniset union
Definition union (m1 m2:uniset) :=
Charac (fun a:A => orb (charac m1 a) (charac m2 a)).
Lemma union_empty_left : forall x:uniset, seq x (union Emptyset x).
Hint Resolve union_empty_left.
Lemma union_empty_right : forall x:uniset, seq x (union x Emptyset).
Hint Resolve union_empty_right.
Lemma union_comm : forall x y:uniset, seq (union x y) (union y x).
Hint Resolve union_comm.
Lemma union_ass :
forall x y z:uniset, seq (union (union x y) z) (union x (union y z)).
Hint Resolve union_ass.
Lemma seq_left : forall x y z:uniset, seq x y -> seq (union x z) (union y z).
Hint Resolve seq_left.
Lemma seq_right : forall x y z:uniset, seq x y -> seq (union z x) (union z y).
Hint Resolve seq_right.
Charac (fun a:A => orb (charac m1 a) (charac m2 a)).
Lemma union_empty_left : forall x:uniset, seq x (union Emptyset x).
Hint Resolve union_empty_left.
Lemma union_empty_right : forall x:uniset, seq x (union x Emptyset).
Hint Resolve union_empty_right.
Lemma union_comm : forall x y:uniset, seq (union x y) (union y x).
Hint Resolve union_comm.
Lemma union_ass :
forall x y z:uniset, seq (union (union x y) z) (union x (union y z)).
Hint Resolve union_ass.
Lemma seq_left : forall x y z:uniset, seq x y -> seq (union x z) (union y z).
Hint Resolve seq_left.
Lemma seq_right : forall x y z:uniset, seq x y -> seq (union z x) (union z y).
Hint Resolve seq_right.
All the proofs that follow duplicate Multiset_of_A
Here we should make uniset an abstract datatype, by hiding Charac,
union, charac; all further properties are proved abstractly
Lemma union_rotate :
forall x y z:uniset, seq (union x (union y z)) (union z (union x y)).
Lemma seq_congr :
forall x y z t:uniset, seq x y -> seq z t -> seq (union x z) (union y t).
Lemma union_perm_left :
forall x y z:uniset, seq (union x (union y z)) (union y (union x z)).
Lemma uniset_twist1 :
forall x y z t:uniset,
seq (union x (union (union y z) t)) (union (union y (union x t)) z).
Lemma uniset_twist2 :
forall x y z t:uniset,
seq (union x (union (union y z) t)) (union (union y (union x z)) t).
specific for treesort