Library Stdlib.Reals.Ranalysis4


From Stdlib Require Import Rbase.
From Stdlib Require Import Rfunctions.
From Stdlib Require Import SeqSeries.
From Stdlib Require Import Rtrigo1.
From Stdlib Require Import Ranalysis1.
From Stdlib Require Import Ranalysis3.
From Stdlib Require Import Exp_prop.
From Stdlib Require Import MVT.
From Stdlib Require Import Lra Lia.
Local Open Scope R_scope.

Lemma derivable_pt_inv :
  forall (f:R -> R) (x:R),
    f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) x.

Lemma pr_nu_var :
  forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
    f = g -> derive_pt f x pr1 = derive_pt g x pr2.

Lemma pr_nu_var2 :
  forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
    (forall h:R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.

Lemma derivable_inv :
  forall f:R -> R, (forall x:R, f x <> 0) -> derivable f -> derivable (/ f).

Lemma derive_pt_inv :
  forall (f:R -> R) (x:R) (pr:derivable_pt f x) (na:f x <> 0),
    derive_pt (/ f) x (derivable_pt_inv f x na pr) =
    - derive_pt f x pr / Rsqr (f x).

Rabsolu
Lemma Rabs_derive_1 : forall x:R, 0 < x -> derivable_pt_lim Rabs x 1.

Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1).

Rabsolu is derivable for all x <> 0
Lemma Rderivable_pt_abs : forall x:R, x <> 0 -> derivable_pt Rabs x.

Rabsolu is continuous for all x
Finite sums : Sum a_k x^k
Lemma continuity_finite_sum :
  forall (An:nat -> R) (N:nat),
    continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).

Lemma derivable_pt_lim_fs :
  forall (An:nat -> R) (x:R) (N:nat),
    (0 < N)%nat ->
    derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
    (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)).

Lemma derivable_pt_lim_finite_sum :
  forall (An:nat -> R) (x:R) (N:nat),
    derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
    match N with
      | O => 0
      | _ => sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)
    end.

Lemma derivable_pt_finite_sum :
  forall (An:nat -> R) (N:nat) (x:R),
    derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x.

Lemma derivable_finite_sum :
  forall (An:nat -> R) (N:nat),
    derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).

Regularity of hyperbolic functions