Library Stdlib.Vectors.Fin
N.B.: This file defines a dependently-type programming view of
bounded integers. Another popular approach is to bundle integers with
a proof of boundedness, thus inheriting integer arithmetic rather than
redefining it on the bounded type. See
https://github.com/coq/coq/blob/master/theories/Vectors/Vector.v
for a similar discussion on bounded lists.
An alternative implementation can be found for instance in
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/fintype.v
One can read more about this type in section 7.4 of this book:
https://zenodo.org/record/4282710.X_q4aGso-yU .
fin n is a way to represent \1 .. n\
fin n can be seen as a n-uplet of unit. F1 is the first element of
the n-uplet. If f is the k-th element of the (n-1)-uplet, FS f is the
(k+1)-th element of the n-uplet.
Author: Pierre Boutillier
Institution: PPS, INRIA 12/2010-01/2012-07/2012
Inductive t : nat -> Set :=
|F1 : forall {n}, t (S n)
|FS : forall {n}, t n -> t (S n).
Section SCHEMES.
Definition case0 P (p: t 0): P p :=
match p with | F1 | FS _ => fun devil => False_rect (@ID) devil end.
Definition caseS' {n : nat} (p : t (S n)) : forall (P : t (S n) -> Type)
(P1 : P F1) (PS : forall (p : t n), P (FS p)), P p :=
match p with
| @F1 k => fun P P1 PS => P1
| FS pp => fun P P1 PS => PS pp
end.
Definition caseS (P: forall {n}, t (S n) -> Type)
(P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p))
{n} (p: t (S n)) : P p := caseS' p P (P1 n) PS.
Definition rectS (P: forall {n}, t (S n) -> Type)
(P1: forall n, @P n F1) (PS : forall {n} (p: t (S n)), P p -> P (FS p)):
forall {n} (p: t (S n)), P p :=
fix rectS_fix {n} (p: t (S n)): P p:=
match p with
| @F1 k => P1 k
| @FS 0 pp => case0 (fun f => P (FS f)) pp
| @FS (S k) pp => PS pp (rectS_fix pp)
end.
Definition rect2 (P : forall {n} (a b : t n), Type)
(H0 : forall n, @P (S n) F1 F1)
(H1 : forall {n} (f : t n), P F1 (FS f))
(H2 : forall {n} (f : t n), P (FS f) F1)
(HS : forall {n} (f g : t n), P f g -> P (FS f) (FS g)) :
forall {n} (a b : t n), P a b :=
fix rect2_fix {n} (a : t n) {struct a} : forall (b : t n), P a b :=
match a with
| @F1 m => fun (b : t (S m)) => caseS' b (P F1) (H0 _) H1
| @FS m a' => fun (b : t (S m)) =>
caseS' b (fun b => P (@FS m a') b) (H2 a') (fun b' => HS _ _ (rect2_fix a' b'))
end.
End SCHEMES.
Definition FS_inj {n} (x y: t n) (eq: FS x = FS y): x = y :=
match eq in _ = a return
match a as a' in t m return match m with |0 => Prop |S n' => t n' -> Prop end
with F1 => fun _ => True |FS y => fun x' => x' = y end x with
eq_refl => eq_refl
end.
to_nat f = p iff f is the p{^ th} element of fin m.
Fixpoint to_nat {m} (n : t m) : {i | i < m} :=
match n with
|@F1 j => exist _ 0 (Nat.lt_0_succ j)
|FS p => match to_nat p with |exist _ i P => exist _ (S i) (proj1 (Nat.succ_lt_mono _ _) P) end
end.
match n with
|@F1 j => exist _ 0 (Nat.lt_0_succ j)
|FS p => match to_nat p with |exist _ i P => exist _ (S i) (proj1 (Nat.succ_lt_mono _ _) P) end
end.
of_nat p n answers the p{^ th} element of fin n if p < n or a proof of
p >= n else
Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } :=
match n with
|0 => inright _ (ex_intro _ p eq_refl)
|S n' => match p with
|0 => inleft _ (F1)
|S p' => match of_nat p' n' with
|inleft f => inleft _ (FS f)
|inright arg => inright _ (match arg with |ex_intro _ m e =>
ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end)
end
end
end.
match n with
|0 => inright _ (ex_intro _ p eq_refl)
|S n' => match p with
|0 => inleft _ (F1)
|S p' => match of_nat p' n' with
|inleft f => inleft _ (FS f)
|inright arg => inright _ (match arg with |ex_intro _ m e =>
ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end)
end
end
end.
of_nat_lt p n H answers the p{^ th} element of fin n
it behaves much better than of_nat p n on open term
Fixpoint of_nat_lt {p n : nat} : p < n -> t n :=
match n with
|0 => fun H : p < 0 => False_rect _ (PeanoNat.Nat.nlt_0_r p H)
|S n' => match p with
|0 => fun _ => @F1 n'
|S p' => fun H => FS (of_nat_lt (proj2 (Nat.succ_lt_mono _ _) H))
end
end.
Lemma of_nat_ext {p}{n} (h h' : p < n) : of_nat_lt h = of_nat_lt h'.
Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p.
Lemma to_nat_of_nat {p}{n} (h : p < n) : to_nat (of_nat_lt h) = exist _ p h.
Lemma to_nat_inj {n} (p q : t n) :
proj1_sig (to_nat p) = proj1_sig (to_nat q) -> p = q.
match n with
|0 => fun H : p < 0 => False_rect _ (PeanoNat.Nat.nlt_0_r p H)
|S n' => match p with
|0 => fun _ => @F1 n'
|S p' => fun H => FS (of_nat_lt (proj2 (Nat.succ_lt_mono _ _) H))
end
end.
Lemma of_nat_ext {p}{n} (h h' : p < n) : of_nat_lt h = of_nat_lt h'.
Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p.
Lemma to_nat_of_nat {p}{n} (h : p < n) : to_nat (of_nat_lt h) = exist _ p h.
Lemma to_nat_inj {n} (p q : t n) :
proj1_sig (to_nat p) = proj1_sig (to_nat q) -> p = q.
weak p f answers a function witch is the identity for the p{^ th} first
element of fin (p + m) and FS (FS .. (FS (f k))) for FS (FS .. (FS k))
with p FSs
Fixpoint weak {m}{n} p (f : t m -> t n) :
t (p + m) -> t (p + n) :=
match p as p' return t (p' + m) -> t (p' + n) with
|0 => f
|S p' => fun x => match x with
|@F1 n' => fun eq : n' = p' + m => F1
|@FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq))
end (eq_refl _)
end.
t (p + m) -> t (p + n) :=
match p as p' return t (p' + m) -> t (p' + n) with
|0 => f
|S p' => fun x => match x with
|@F1 n' => fun eq : n' = p' + m => F1
|@FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq))
end (eq_refl _)
end.
The p{^ th} element of fin m viewed as the p{^ th} element of
fin (m + n)
Fixpoint L {m} n (p : t m) : t (m + n) :=
match p with |F1 => F1 |FS p' => FS (L n p') end.
Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p).
Lemma L_inj {m} n (p q : t m) : L n p = L n q -> p = q.
match p with |F1 => F1 |FS p' => FS (L n p') end.
Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p).
Lemma L_inj {m} n (p q : t m) : L n p = L n q -> p = q.
The p{^ th} element of fin m viewed as the p{^ th} element of
fin (n + m)
Really really inefficient !!!
The p{^ th} element of fin m viewed as the (n + p){^ th} element of
fin (n + m)
Fixpoint R {m} n (p : t m) : t (n + m) :=
match n with |0 => p |S n' => FS (R n' p) end.
Lemma R_sanity {m} n (p : t m) : proj1_sig (to_nat (R n p)) = n + proj1_sig (to_nat p).
Lemma R_inj {m} n (p q : t m) : R n p = R n q -> p = q.
Lemma L_R_neq n m (p : t n) (q : t m) : L m p <> R n q.
Fixpoint case_L_R' {n m} : forall (P : t (n + m) -> Type) (p : t (n + m)),
(forall q, P (L m q)) -> (forall q, P (R n q)) -> P p :=
match n with
| 0 => fun P p HL HR => HR p
| S n' => fun P p HL HR => Fin.caseS' p P
(HL Fin.F1)
(fun p' => case_L_R' (fun q => P (Fin.FS q)) p' (fun q => HL (Fin.FS q)) HR)
end.
Definition case_L_R (P : forall n m, t (n + m) -> Type) {n m} (p : t (n + m)) :
(forall n m (q : t n), P n m (L m q)) -> (forall n m (q : t m), P n m (R n q)) -> P n m p :=
fun HL HR => case_L_R' _ p (HL _ _) (HR _ _).
Lemma case_L_R'_L {n m : nat} (P : Fin.t (n + m) -> Type) (p : Fin.t n) HL HR :
case_L_R' P (Fin.L m p) HL HR = HL p.
Lemma case_L_R'_R {n m : nat} (P : Fin.t (n + m) -> Type) (p : Fin.t m) HL HR :
case_L_R' P (Fin.R n p) HL HR = HR p.
Lemma case_L_R_L (P : forall n m, t (n + m) -> Type) {n m} (p : Fin.t n) HL HR :
case_L_R P (Fin.L m p) HL HR = HL _ _ p.
Lemma case_L_R_R (P : forall n m, t (n + m) -> Type) {n m} (p : Fin.t m) HL HR :
case_L_R P (Fin.R n p) HL HR = HR _ _ p.
Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) :=
match o with
|@F1 m' => L (m' * n) p
|FS o' => R n (depair o' p)
end.
Lemma depair_sanity {m n} (o : t m) (p : t n) :
proj1_sig (to_nat (depair o p)) = n * (proj1_sig (to_nat o)) + (proj1_sig (to_nat p)).
Fixpoint eqb {m n} (p : t m) (q : t n) :=
match p, q with
| @F1 m', @F1 n' => Nat.eqb m' n'
| FS _, F1 => false
| F1, FS _ => false
| FS p', FS q' => eqb p' q'
end.
Lemma eqb_nat_eq : forall m n (p : t m) (q : t n), eqb p q = true -> m = n.
Lemma eqb_eq : forall n (p q : t n), eqb p q = true <-> p = q.
Lemma eq_dec {n} (x y : t n): {x = y} + {x <> y}.
Definition cast: forall {m} (v: t m) {n}, m = n -> t n.
match n with |0 => p |S n' => FS (R n' p) end.
Lemma R_sanity {m} n (p : t m) : proj1_sig (to_nat (R n p)) = n + proj1_sig (to_nat p).
Lemma R_inj {m} n (p q : t m) : R n p = R n q -> p = q.
Lemma L_R_neq n m (p : t n) (q : t m) : L m p <> R n q.
Fixpoint case_L_R' {n m} : forall (P : t (n + m) -> Type) (p : t (n + m)),
(forall q, P (L m q)) -> (forall q, P (R n q)) -> P p :=
match n with
| 0 => fun P p HL HR => HR p
| S n' => fun P p HL HR => Fin.caseS' p P
(HL Fin.F1)
(fun p' => case_L_R' (fun q => P (Fin.FS q)) p' (fun q => HL (Fin.FS q)) HR)
end.
Definition case_L_R (P : forall n m, t (n + m) -> Type) {n m} (p : t (n + m)) :
(forall n m (q : t n), P n m (L m q)) -> (forall n m (q : t m), P n m (R n q)) -> P n m p :=
fun HL HR => case_L_R' _ p (HL _ _) (HR _ _).
Lemma case_L_R'_L {n m : nat} (P : Fin.t (n + m) -> Type) (p : Fin.t n) HL HR :
case_L_R' P (Fin.L m p) HL HR = HL p.
Lemma case_L_R'_R {n m : nat} (P : Fin.t (n + m) -> Type) (p : Fin.t m) HL HR :
case_L_R' P (Fin.R n p) HL HR = HR p.
Lemma case_L_R_L (P : forall n m, t (n + m) -> Type) {n m} (p : Fin.t n) HL HR :
case_L_R P (Fin.L m p) HL HR = HL _ _ p.
Lemma case_L_R_R (P : forall n m, t (n + m) -> Type) {n m} (p : Fin.t m) HL HR :
case_L_R P (Fin.R n p) HL HR = HR _ _ p.
Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) :=
match o with
|@F1 m' => L (m' * n) p
|FS o' => R n (depair o' p)
end.
Lemma depair_sanity {m n} (o : t m) (p : t n) :
proj1_sig (to_nat (depair o p)) = n * (proj1_sig (to_nat o)) + (proj1_sig (to_nat p)).
Fixpoint eqb {m n} (p : t m) (q : t n) :=
match p, q with
| @F1 m', @F1 n' => Nat.eqb m' n'
| FS _, F1 => false
| F1, FS _ => false
| FS p', FS q' => eqb p' q'
end.
Lemma eqb_nat_eq : forall m n (p : t m) (q : t n), eqb p q = true -> m = n.
Lemma eqb_eq : forall n (p q : t n), eqb p q = true <-> p = q.
Lemma eq_dec {n} (x y : t n): {x = y} + {x <> y}.
Definition cast: forall {m} (v: t m) {n}, m = n -> t n.