Library Coq.NArith.BinNat

Binary natural numbers, operations and properties

The type N and its constructors N0 and Npos are now defined in BinNums.v
Every definitions and properties about binary natural numbers are placed in a module N for qualification purpose.

Local Open Scope N_scope.

Every definitions and early properties about positive numbers are placed in a module N for qualification purpose.
Definitions of operations, now in a separate file

Include BinNatDef.N.

When including property functors, only inline t eq zero one two


Logical predicates

Definition eq := @Logic.eq N.
Definition eq_equiv := @eq_equivalence N.

Definition lt x y := (x ?= y) = Lt.
Definition gt x y := (x ?= y) = Gt.
Definition le x y := (x ?= y) <> Gt.
Definition ge x y := (x ?= y) <> Lt.

Infix "<=" := le : N_scope.
Infix "<" := lt : N_scope.
Infix ">=" := ge : N_scope.
Infix ">" := gt : N_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : N_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : N_scope.
Notation "x < y < z" := (x < y /\ y < z) : N_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : N_scope.

Definition divide p q := exists r, q = r*p.
Notation "( p | q )" := (divide p q) (at level 0) : N_scope.

Definition Even n := exists m, n = 2*m.
Definition Odd n := exists m, n = 2*m+1.

Proofs of morphisms, obvious since eq is Leibniz

Program Definition succ_wd : Proper (eq==>eq) succ := _.
Program Definition pred_wd : Proper (eq==>eq) pred := _.
Program Definition add_wd : Proper (eq==>eq==>eq) add := _.
Program Definition sub_wd : Proper (eq==>eq==>eq) sub := _.
Program Definition mul_wd : Proper (eq==>eq==>eq) mul := _.
Program Definition lt_wd : Proper (eq==>eq==>iff) lt := _.
Program Definition div_wd : Proper (eq==>eq==>eq) div := _.
Program Definition mod_wd : Proper (eq==>eq==>eq) modulo := _.
Program Definition pow_wd : Proper (eq==>eq==>eq) pow := _.
Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _.

Decidability of equality.

Definition eq_dec : forall n m : N, { n = m } + { n <> m }.

Discrimination principle

Definition discr n : { p:positive | n = pos p } + { n = 0 }.

Convenient induction principles

Definition binary_rect (P:N -> Type) (f0 : P 0)
  (f2 : forall n, P n -> P (double n))
  (fS2 : forall n, P n -> P (succ_double n)) (n : N) : P n :=
 let P' p := P (pos p) in
 let f2' p := f2 (pos p) in
 let fS2' p := fS2 (pos p) in
 match n with
 | 0 => f0
 | pos p => positive_rect P' fS2' f2' (fS2 0 f0) p
 end.

Definition binary_rec (P:N -> Set) := binary_rect P.
Definition binary_ind (P:N -> Prop) := binary_rect P.

Peano induction on binary natural numbers

Definition peano_rect
  (P : N -> Type) (f0 : P 0)
    (f : forall n : N, P n -> P (succ n)) (n : N) : P n :=
let P' p := P (pos p) in
let f' p := f (pos p) in
match n with
| 0 => f0
| pos p => Pos.peano_rect P' (f 0 f0) f' p
end.

Theorem peano_rect_base P a f : peano_rect P a f 0 = a.

Theorem peano_rect_succ P a f n :
 peano_rect P a f (succ n) = f n (peano_rect P a f n).

Definition peano_ind (P : N -> Prop) := peano_rect P.

Definition peano_rec (P : N -> Set) := peano_rect P.

Theorem peano_rec_base P a f : peano_rec P a f 0 = a.

Theorem peano_rec_succ P a f n :
 peano_rec P a f (succ n) = f n (peano_rec P a f n).

Generic induction / recursion

Theorem bi_induction :
  forall A : N -> Prop, Proper (Logic.eq==>iff) A ->
    A 0 -> (forall n, A n <-> A (succ n)) -> forall n : N, A n.

Definition recursion {A} : A -> (N -> A -> A) -> N -> A :=
  peano_rect (fun _ => A).

Instance recursion_wd {A} (Aeq : relation A) :
 Proper (Aeq==>(Logic.eq==>Aeq==>Aeq)==>Logic.eq==>Aeq) recursion.

Theorem recursion_0 {A} (a:A) (f:N->A->A) : recursion a f 0 = a.

Theorem recursion_succ {A} (Aeq : relation A) (a : A) (f : N -> A -> A):
 Aeq a a -> Proper (Logic.eq==>Aeq==>Aeq) f ->
  forall n : N, Aeq (recursion a f (succ n)) (f n (recursion a f n)).

Specification of constants

Lemma one_succ : 1 = succ 0.

Lemma two_succ : 2 = succ 1.

Definition pred_0 : pred 0 = 0.

Properties of mixed successor and predecessor.
Properties of successor and predecessor

Theorem pred_succ n : pred (succ n) = n.

Theorem pred_sub n : pred n = sub n 1.

Theorem succ_0_discr n : succ n <> 0.

Specification of addition

Theorem add_0_l n : 0 + n = n.

Theorem add_succ_l n m : succ n + m = succ (n + m).

Specification of subtraction.

Theorem sub_0_r n : n - 0 = n.

Theorem sub_succ_r n m : n - succ m = pred (n - m).

Specification of multiplication

Theorem mul_0_l n : 0 * n = 0.

Theorem mul_succ_l n m : (succ n) * m = n * m + m.

Specification of boolean comparisons.

Lemma eqb_eq n m : eqb n m = true <-> n=m.

Lemma ltb_lt n m : (n <? m) = true <-> n < m.

Lemma leb_le n m : (n <=? m) = true <-> n <= m.

Basic properties of comparison

Theorem compare_eq_iff n m : (n ?= m) = Eq <-> n = m.

Theorem compare_lt_iff n m : (n ?= m) = Lt <-> n < m.

Theorem compare_le_iff n m : (n ?= m) <> Gt <-> n <= m.

Theorem compare_antisym n m : (m ?= n) = CompOpp (n ?= m).

Some more advanced properties of comparison and orders, including compare_spec and lt_irrefl and lt_eq_cases.

Include BoolOrderFacts.

Specification of minimum and maximum

Theorem min_l n m : n <= m -> min n m = n.

Theorem min_r n m : m <= n -> min n m = m.

Theorem max_l n m : m <= n -> max n m = n.

Theorem max_r n m : n <= m -> max n m = m.

Specification of lt and le.

Lemma lt_succ_r n m : n < succ m <-> n<=m.

We can now derive all properties of basic functions and orders, and use these properties for proving the specs of more advanced functions.
Properties of double and succ_double
0 is the least natural number

Theorem compare_0_r n : (n ?= 0) <> Lt.

Specifications of power

Lemma pow_0_r n : n ^ 0 = 1.

Lemma pow_succ_r n p : 0<=p -> n^(succ p) = n * n^p.

Lemma pow_neg_r n p : p<0 -> n^p = 0.

Specification of square

Lemma square_spec n : square n = n * n.

Specification of Base-2 logarithm

Lemma size_log2 n : n<>0 -> size n = succ (log2 n).

Lemma size_gt n : n < 2^(size n).

Lemma size_le n : 2^(size n) <= succ_double n.

Lemma log2_spec n : 0 < n ->
 2^(log2 n) <= n < 2^(succ (log2 n)).

Lemma log2_nonpos n : n<=0 -> log2 n = 0.

Specification of parity functions

Lemma even_spec n : even n = true <-> Even n.

Lemma odd_spec n : odd n = true <-> Odd n.

Specification of the euclidean division

Theorem pos_div_eucl_spec (a:positive)(b:N) :
  let (q,r) := pos_div_eucl a b in pos a = q * b + r.

Theorem div_eucl_spec a b :
 let (q,r) := div_eucl a b in a = b * q + r.

Theorem div_mod' a b : a = b * (a/b) + (a mod b).

Definition div_mod a b : b<>0 -> a = b * (a/b) + (a mod b).

Theorem pos_div_eucl_remainder (a:positive) (b:N) :
  b<>0 -> snd (pos_div_eucl a b) < b.

Theorem mod_lt a b : b<>0 -> a mod b < b.

Theorem mod_bound_pos a b : 0<=a -> 0<b -> 0 <= a mod b < b.

Specification of square root

Lemma sqrtrem_sqrt n : fst (sqrtrem n) = sqrt n.

Lemma sqrtrem_spec n :
 let (s,r) := sqrtrem n in n = s*s + r /\ r <= 2*s.

Lemma sqrt_spec n : 0<=n ->
 let s := sqrt n in s*s <= n < (succ s)*(succ s).

Lemma sqrt_neg n : n<0 -> sqrt n = 0.

Specification of gcd
The first component of ggcd is gcd

Lemma ggcd_gcd a b : fst (ggcd a b) = gcd a b.

The other components of ggcd are indeed the correct factors.

Lemma ggcd_correct_divisors a b :
  let '(g,(aa,bb)) := ggcd a b in
  a=g*aa /\ b=g*bb.

We can use this fact to prove a part of the gcd correctness

Lemma gcd_divide_l a b : (gcd a b | a).

Lemma gcd_divide_r a b : (gcd a b | b).

We now prove directly that gcd is the greatest amongst common divisors

Lemma gcd_greatest a b c : (c|a) -> (c|b) -> (c|gcd a b).

Lemma gcd_nonneg a b : 0 <= gcd a b.

Specification of bitwise functions
Correctness proofs for testbit.

Lemma testbit_even_0 a : testbit (2*a) 0 = false.

Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.

Lemma testbit_succ_r_div2 a n : 0<=n ->
 testbit a (succ n) = testbit (div2 a) n.

Lemma testbit_odd_succ a n : 0<=n ->
 testbit (2*a+1) (succ n) = testbit a n.

Lemma testbit_even_succ a n : 0<=n ->
 testbit (2*a) (succ n) = testbit a n.

Lemma testbit_neg_r a n : n<0 -> testbit a n = false.

Correctness proofs for shifts

Lemma shiftr_succ_r a n :
 shiftr a (succ n) = div2 (shiftr a n).

Lemma shiftl_succ_r a n :
 shiftl a (succ n) = double (shiftl a n).

Lemma shiftr_spec a n m : 0<=m ->
 testbit (shiftr a n) m = testbit a (m+n).

Lemma shiftl_spec_high a n m : 0<=m -> n<=m ->
 testbit (shiftl a n) m = testbit a (m-n).

Lemma shiftl_spec_low a n m : m<n ->
 testbit (shiftl a n) m = false.

Definition div2_spec a : div2 a = shiftr a 1.

Semantics of bitwise operations
Instantiation of generic properties of advanced functions (pow, sqrt, log2, div, gcd, ...)

Include NExtraProp.

In generic statements, the predicates lt and le have been favored, whereas gt and ge don't even exist in the abstract layers. The use of gt and ge is hence not recommended. We provide here the bare minimal results to related them with lt and le.

Lemma gt_lt_iff n m : n > m <-> m < n.

Lemma gt_lt n m : n > m -> m < n.

Lemma lt_gt n m : n < m -> m > n.

Lemma ge_le_iff n m : n >= m <-> m <= n.

Lemma ge_le n m : n >= m -> m <= n.

Lemma le_ge n m : n <= m -> m >= n.

Auxiliary results about right shift on positive numbers, used in BinInt
Exportation of notations


Infix "+" := N.add : N_scope.
Infix "-" := N.sub : N_scope.
Infix "*" := N.mul : N_scope.
Infix "^" := N.pow : N_scope.

Infix "?=" := N.compare (at level 70, no associativity) : N_scope.

Infix "<=" := N.le : N_scope.
Infix "<" := N.lt : N_scope.
Infix ">=" := N.ge : N_scope.
Infix ">" := N.gt : N_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : N_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : N_scope.
Notation "x < y < z" := (x < y /\ y < z) : N_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : N_scope.

Infix "=?" := N.eqb (at level 70, no associativity) : N_scope.
Infix "<=?" := N.leb (at level 70, no associativity) : N_scope.
Infix "<?" := N.ltb (at level 70, no associativity) : N_scope.

Infix "/" := N.div : N_scope.
Infix "mod" := N.modulo (at level 40, no associativity) : N_scope.

Notation "( p | q )" := (N.divide p q) (at level 0) : N_scope.

Compatibility notations

Notation N_rect := N_rect (only parsing).
Notation N_rec := N_rec (only parsing).
Notation N_ind := N_ind (only parsing).
Notation N0 := N0 (only parsing).
Notation Npos := N.pos (only parsing).

Notation Ndouble_plus_one := N.succ_double (only parsing).
Notation Nplus := N.add (only parsing).
Notation Nminus := N.sub (only parsing).
Notation Nmult := N.mul (only parsing).

Notation nat_of_N := N.to_nat (only parsing).
Notation N_of_nat := N.of_nat (only parsing).
Notation Nrect := N.peano_rect (only parsing).
Notation Nrect_base := N.peano_rect_base (only parsing).
Notation Nrect_step := N.peano_rect_succ (only parsing).
Notation Nind := N.peano_ind (only parsing).
Notation Nrec := N.peano_rec (only parsing).
Notation Nrec_base := N.peano_rec_base (only parsing).
Notation Nrec_succ := N.peano_rec_succ (only parsing).

Notation Npred_minus := N.pred_sub (only parsing).
Notation Ppred_N_spec := N.pos_pred_spec (only parsing).
Notation Ppred_Nsucc := N.pos_pred_succ (only parsing).
Notation Nplus_0_l := N.add_0_l (only parsing).
Notation Nplus_0_r := N.add_0_r (only parsing).
Notation Nplus_comm := N.add_comm (only parsing).
Notation Nplus_assoc := N.add_assoc (only parsing).
Notation Nplus_succ := N.add_succ_l (only parsing).
Notation Nsucc_0 := N.succ_0_discr (only parsing).
Notation Nminus_N0_Nle := N.sub_0_le (only parsing).
Notation Nminus_0_r := N.sub_0_r (only parsing).
Notation Nminus_succ_r:= N.sub_succ_r (only parsing).
Notation Nmult_0_l := N.mul_0_l (only parsing).
Notation Nmult_1_l := N.mul_1_l (only parsing).
Notation Nmult_1_r := N.mul_1_r (only parsing).
Notation Nmult_comm := N.mul_comm (only parsing).
Notation Nmult_assoc := N.mul_assoc (only parsing).
Notation Nmult_plus_distr_r := N.mul_add_distr_r (only parsing).
Notation Nle_0 := N.le_0_l (only parsing).
Notation Ncompare_Eq_eq := N.compare_eq (only parsing).
Notation Ncompare_eq_correct := N.compare_eq_iff (only parsing).
Notation Nle_lteq := N.lt_eq_cases (only parsing).
Notation Ncompare_0 := N.compare_0_r (only parsing).
Notation Ndouble_div2 := N.div2_double (only parsing).
Notation Ndouble_plus_one_div2 := N.div2_succ_double (only parsing).
Notation Ndouble_plus_one_inj := N.succ_double_inj (only parsing).
Notation Nlt_not_eq := N.lt_neq (only parsing).
Notation Ngt_Nlt := N.gt_lt (only parsing).

More complex compatibility facts, expressed as lemmas (to preserve scopes for instance)

Lemma Nplus_reg_l n m p : n + m = n + p -> m = p.
Lemma Nmult_Sn_m n m : N.succ n * m = m + n * m.
Lemma Nmult_plus_distr_l n m p : p * (n + m) = p * n + p * m.
Lemma Nmult_reg_r n m p : p <> 0 -> n * p = m * p -> n = m.
Lemma Ncompare_antisym n m : CompOpp (n ?= m) = (m ?= n).

Definition N_ind_double a P f0 f2 fS2 := N.binary_ind P f0 f2 fS2 a.
Definition N_rec_double a P f0 f2 fS2 := N.binary_rec P f0 f2 fS2 a.

Not kept : Ncompare_n_Sm Nplus_lt_cancel_l