Library Coq.ZArith.Zlogarithm
The integer logarithms with base 2.
THIS FILE IS DEPRECATED.
Please rather use Z.log2 (or Z.log2_up), which
are defined in BinIntDef, and whose properties can
be found in BinInt.Z.
First we build log_inf and log_sup
Fixpoint log_inf (p:positive) : Z :=
match p with
| xH => 0
| xO q => Z.succ (log_inf q)
| xI q => Z.succ (log_inf q)
end.
Fixpoint log_sup (p:positive) : Z :=
match p with
| xH => 0
| xO n => Z.succ (log_sup n)
| xI n => Z.succ (Z.succ (log_inf n))
end.
Hint Unfold log_inf log_sup : core.
Lemma Psize_log_inf : forall p, Zpos (Pos.size p) = Z.succ (log_inf p).
Lemma Zlog2_log_inf : forall p, Z.log2 (Zpos p) = log_inf p.
Lemma Zlog2_up_log_sup : forall p, Z.log2_up (Zpos p) = log_sup p.
Then we give the specifications of log_inf and log_sup
and prove their validity
Hint Resolve Z.le_trans: zarith.
Theorem log_inf_correct :
forall x:positive,
0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Z.succ (log_inf x)).
Definition log_inf_correct1 (p:positive) := proj1 (log_inf_correct p).
Definition log_inf_correct2 (p:positive) := proj2 (log_inf_correct p).
Opaque log_inf_correct1 log_inf_correct2.
Hint Resolve log_inf_correct1 log_inf_correct2: zarith.
Lemma log_sup_correct1 : forall p:positive, 0 <= log_sup p.
For every p, either p is a power of two and (log_inf p)=(log_sup p)
either (log_sup p)=(log_inf p)+1
Theorem log_sup_log_inf :
forall p:positive,
IF Zpos p = two_p (log_inf p) then Zpos p = two_p (log_sup p)
else log_sup p = Z.succ (log_inf p).
Theorem log_sup_correct2 :
forall x:positive, two_p (Z.pred (log_sup x)) < Zpos x <= two_p (log_sup x).
Lemma log_inf_le_log_sup : forall p:positive, log_inf p <= log_sup p.
Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Z.succ (log_inf p).
Now it's possible to specify and build the Log rounded to the nearest
Fixpoint log_near (x:positive) : Z :=
match x with
| xH => 0
| xO xH => 1
| xI xH => 2
| xO y => Z.succ (log_near y)
| xI y => Z.succ (log_near y)
end.
Theorem log_near_correct1 : forall p:positive, 0 <= log_near p.
Theorem log_near_correct2 :
forall p:positive, log_near p = log_inf p \/ log_near p = log_sup p.
End Log_pos.
Section divers.
Number of significative digits.
Definition N_digits (x:Z) :=
match x with
| Zpos p => log_inf p
| Zneg p => log_inf p
| Z0 => 0
end.
Lemma ZERO_le_N_digits : forall x:Z, 0 <= N_digits x.
Lemma log_inf_shift_nat : forall n:nat, log_inf (shift_nat n 1) = Z.of_nat n.
Lemma log_sup_shift_nat : forall n:nat, log_sup (shift_nat n 1) = Z.of_nat n.
Is_power p means that p is a power of two