Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (23166 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (950 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (746 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1491 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (545 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10708 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (946 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (603 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (461 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (291 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (473 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (760 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1145 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (3885 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (162 entries) |
E
ecast [abbreviation, in Coq.ssr.ssrfun]Efficient_Rec.R_wf [variable, in Coq.ZArith.Wf_Z]
Efficient_Rec.R [variable, in Coq.ZArith.Wf_Z]
Efficient_Rec [section, in Coq.ZArith.Wf_Z]
El [abbreviation, in Coq.Logic.ClassicalFacts]
elements_in_partition [lemma, in Coq.Lists.List]
elim [projection, in Coq.Program.Equality]
elimF [lemma, in Coq.ssr.ssrbool]
elimFn [lemma, in Coq.ssr.ssrbool]
elimN [lemma, in Coq.ssr.ssrbool]
elimNf [lemma, in Coq.ssr.ssrbool]
elimNTF [lemma, in Coq.ssr.ssrbool]
elimT [lemma, in Coq.ssr.ssrbool]
elimTF [lemma, in Coq.ssr.ssrbool]
elimTFn [lemma, in Coq.ssr.ssrbool]
elimTn [lemma, in Coq.ssr.ssrbool]
elim_concl_lt [lemma, in Coq.micromega.Ztac]
elim_concl_le [lemma, in Coq.micromega.Ztac]
elim_concl_eq [lemma, in Coq.micromega.Ztac]
elim_type [projection, in Coq.Program.Equality]
Elt [constructor, in Coq.micromega.VarMap]
Elts [section, in Coq.Lists.List]
Elts.A [variable, in Coq.Lists.List]
Elts.eq_dec [variable, in Coq.Lists.List]
emax [definition, in Coq.Floats.FloatOps]
emin [abbreviation, in Coq.Floats.FloatOps]
emin [definition, in Coq.Floats.SpecFloat]
Empty [constructor, in Coq.micromega.VarMap]
empty [definition, in Coq.micromega.ZMicromega]
empty [definition, in Coq.rtauto.Bintree]
EmptyBag [definition, in Coq.Sets.Multiset]
Emptyset [definition, in Coq.Sets.Uniset]
EmptyString [constructor, in Coq.Strings.String]
Empty_set [inductive, in Coq.Init.Datatypes]
Empty_set [inductive, in Coq.Sets.Ensembles]
empty_set [definition, in Coq.Lists.ListSet]
Empty_is_finite [constructor, in Coq.Sets.Finite_sets]
Empty_set_zero' [lemma, in Coq.Sets.Powerset_facts]
Empty_set_zero_right [lemma, in Coq.Sets.Powerset_facts]
Empty_set_zero [lemma, in Coq.Sets.Powerset_facts]
Empty_set_is_Bottom [lemma, in Coq.Sets.Powerset]
Empty_set_minimal [lemma, in Coq.Sets.Powerset]
ENCODING_VALUE [section, in Coq.ZArith.Zdigits]
Endomorph_id [lemma, in Coq.Reals.ConstructiveRealsMorphisms]
Endo_Injective_Surjective [lemma, in Coq.Logic.FinFun]
Ensemble [definition, in Coq.Sets.Ensembles]
Ensembles [section, in Coq.Sets.Ensembles]
Ensembles [library]
Ensembles_classical.U [variable, in Coq.Sets.Classical_sets]
Ensembles_classical [section, in Coq.Sets.Classical_sets]
Ensembles_facts.U [variable, in Coq.Sets.Constructive_sets]
Ensembles_facts [section, in Coq.Sets.Constructive_sets]
Ensembles_finis_facts.U [variable, in Coq.Sets.Finite_sets]
Ensembles_finis_facts [section, in Coq.Sets.Finite_sets]
Ensembles_finis.U [variable, in Coq.Sets.Finite_sets]
Ensembles_finis [section, in Coq.Sets.Finite_sets]
Ensembles.U [variable, in Coq.Sets.Ensembles]
enumeration [definition, in Coq.Reals.Runcountable]
EnumProof [constructor, in Coq.micromega.ZMicromega]
env [definition, in Coq.micromega.ZMicromega]
Env [definition, in Coq.micromega.Env]
Env [library]
Env [library]
EnvRing [library]
env_morph [lemma, in Coq.micromega.EnvRing]
eps [abbreviation, in Coq.Logic.Diaconescu]
epsilon [definition, in Coq.Logic.Epsilon]
epsilon [definition, in Coq.Logic.ClassicalEpsilon]
Epsilon [library]
EpsilonStatement [abbreviation, in Coq.Logic.ChoiceFacts]
EpsilonStatement_on [definition, in Coq.Logic.ChoiceFacts]
epsilon_imp_small_drinker [lemma, in Coq.Logic.ChoiceFacts]
epsilon_imp_constructive_indefinite_description [lemma, in Coq.Logic.ChoiceFacts]
epsilon_smallest [definition, in Coq.Logic.ConstructiveEpsilon]
epsilon_spec [definition, in Coq.Logic.Epsilon]
epsilon_statement [axiom, in Coq.Logic.Epsilon]
epsilon_inh_irrelevance [lemma, in Coq.Logic.ClassicalEpsilon]
epsilon_spec [definition, in Coq.Logic.ClassicalEpsilon]
eps2 [lemma, in Coq.Reals.Rlimit]
eps2_Rgt_R0 [lemma, in Coq.Reals.Rlimit]
eps4 [lemma, in Coq.Reals.Rlimit]
eq [projection, in Coq.Logic.ExtensionalityFacts]
eq [inductive, in Coq.Init.Logic]
Eq [module, in Coq.Structures.Equalities]
EQ [constructor, in Coq.Structures.OrderedType]
Eq [constructor, in Coq.Init.Datatypes]
eqarefl [definition, in Coq.Lists.SetoidList]
eqasym [definition, in Coq.Lists.SetoidList]
eqatrans [definition, in Coq.Lists.SetoidList]
eqb [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
eqb [definition, in Coq.Vectors.Fin]
eqb [definition, in Coq.Init.Nat]
eqb [definition, in Coq.Strings.Ascii]
eqb [definition, in Coq.Vectors.VectorEq]
eqb [definition, in Coq.Strings.Byte]
eqb [definition, in Coq.Bool.Bool]
eqb [axiom, in Coq.Floats.PrimFloat]
eqb [definition, in Coq.Strings.String]
EqbNotation [module, in Coq.Structures.Equalities]
_ =? _ [notation, in Coq.Structures.Equalities]
eqbP [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
EqbSpec [module, in Coq.Structures.Equalities]
EqbSpec.eqb_eq [axiom, in Coq.Structures.Equalities]
eqb_false_correct [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqb_false_complete [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqb_false_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqb_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqb_complete [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqb_refl [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
eqb_correct [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
eqb_eq [lemma, in Coq.Vectors.Fin]
eqb_nat_eq [lemma, in Coq.Vectors.Fin]
eqb_compat [lemma, in Coq.Strings.Ascii]
eqb_neq [lemma, in Coq.Strings.Ascii]
eqb_eq [lemma, in Coq.Strings.Ascii]
eqb_sym [lemma, in Coq.Strings.Ascii]
eqb_refl [lemma, in Coq.Strings.Ascii]
eqb_spec [lemma, in Coq.Strings.Ascii]
eqb_eq [lemma, in Coq.Vectors.VectorEq]
eqb_nat_eq [lemma, in Coq.Vectors.VectorEq]
eqb_false [lemma, in Coq.Strings.Byte]
eqb_spec [lemma, in Coq.Bool.Bool]
eqb_eq [lemma, in Coq.Bool.Bool]
eqb_refl [lemma, in Coq.Bool.Bool]
eqb_negb2 [lemma, in Coq.Bool.Bool]
eqb_negb1 [lemma, in Coq.Bool.Bool]
eqb_false_iff [lemma, in Coq.Bool.Bool]
eqb_true_iff [lemma, in Coq.Bool.Bool]
eqb_prop [lemma, in Coq.Bool.Bool]
eqb_reflx [lemma, in Coq.Bool.Bool]
eqb_subst [lemma, in Coq.Bool.Bool]
eqb_spec [axiom, in Coq.Floats.FloatAxioms]
eqb_compat [lemma, in Coq.Strings.String]
eqb_neq [lemma, in Coq.Strings.String]
eqb_eq [lemma, in Coq.Strings.String]
eqb_sym [lemma, in Coq.Strings.String]
eqb_refl [lemma, in Coq.Strings.String]
eqb_spec [lemma, in Coq.Strings.String]
eqb31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
eqb31_correct [lemma, in Coq.Numbers.Cyclic.Int31.Ring31]
eqb31_eq [lemma, in Coq.Numbers.Cyclic.Int31.Ring31]
EqDec [record, in Coq.Classes.SetoidDec]
EqDec [inductive, in Coq.Classes.SetoidDec]
EqDec [definition, in Coq.Logic.FinFun]
EqDec [record, in Coq.Classes.EquivDec]
EqDec [inductive, in Coq.Classes.EquivDec]
EqDeltaProjs [abbreviation, in Coq.Logic.ExtensionalityFacts]
Eqdep [library]
EqdepDec [section, in Coq.Logic.Eqdep_dec]
EqdepDec.A [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.comp [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.eq_dec [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.nu [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.nu_inv [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.nu_constant [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.proj [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.x [variable, in Coq.Logic.Eqdep_dec]
EqdepElimination [module, in Coq.Logic.EqdepFacts]
EqdepElimination.eq_rect_eq [axiom, in Coq.Logic.EqdepFacts]
EqdepFacts [library]
EqdepTheory [module, in Coq.Logic.Classical_Prop]
EqdepTheory [module, in Coq.Logic.EqdepFacts]
EqdepTheory [module, in Coq.Logic.Eqdep]
EqdepTheory.Axioms [section, in Coq.Logic.EqdepFacts]
EqdepTheory.Axioms.U [variable, in Coq.Logic.EqdepFacts]
EqdepTheory.eq_dep_eq [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.eq_rec_eq [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.eq_rect_eq [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.inj_pairT2 [abbreviation, in Coq.Logic.EqdepFacts]
EqdepTheory.inj_pair2 [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.Streicher_K [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.UIP [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.UIP_refl [lemma, in Coq.Logic.EqdepFacts]
Eqdep_dec [library]
eqf [definition, in Coq.NArith.Ndigits]
eqfun [definition, in Coq.ssr.ssrfun]
eqf_equiv [instance, in Coq.NArith.Ndigits]
EqLe [module, in Coq.Structures.Orders]
EqLeNotation [module, in Coq.Structures.Orders]
EqLe' [module, in Coq.Structures.Orders]
eqlistA [inductive, in Coq.Lists.SetoidList]
eqlistA_PermutationA [lemma, in Coq.Lists.SetoidPermutation]
eqlistA_rev [lemma, in Coq.Lists.SetoidList]
eqlistA_rev_app [lemma, in Coq.Lists.SetoidList]
eqlistA_app [lemma, in Coq.Lists.SetoidList]
eqlistA_length [lemma, in Coq.Lists.SetoidList]
eqlistA_equivlistA [instance, in Coq.Lists.SetoidList]
eqlistA_equiv [instance, in Coq.Lists.SetoidList]
eqlistA_altdef [lemma, in Coq.Lists.SetoidList]
eqlistA_cons [constructor, in Coq.Lists.SetoidList]
eqlistA_nil [constructor, in Coq.Lists.SetoidList]
EqLt [module, in Coq.Structures.Orders]
EqLtLe [module, in Coq.Structures.Orders]
EqLtLeNotation [module, in Coq.Structures.Orders]
EqLtLe' [module, in Coq.Structures.Orders]
EqLtNotation [module, in Coq.Structures.Orders]
EqLt' [module, in Coq.Structures.Orders]
eqm [definition, in Coq.ZArith.Zdiv]
eqmE [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqmI [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqm_subE [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqm_sub [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqm_mod [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqm_setoid [instance, in Coq.ZArith.Zdiv]
eqm_trans [lemma, in Coq.ZArith.Zdiv]
eqm_sym [lemma, in Coq.ZArith.Zdiv]
eqm_refl [lemma, in Coq.ZArith.Zdiv]
EqNat [library]
EqNotation [module, in Coq.Structures.Equalities]
EqNotations [module, in Coq.Init.Logic]
rew -> [ _ ] _ in _ [notation, in Coq.Init.Logic]
rew -> _ in _ [notation, in Coq.Init.Logic]
rew <- [ _ ] _ in _ [notation, in Coq.Init.Logic]
rew <- _ in _ [notation, in Coq.Init.Logic]
rew [ _ ] _ in _ [notation, in Coq.Init.Logic]
rew _ in _ [notation, in Coq.Init.Logic]
_ ~= _ [notation, in Coq.Structures.Equalities]
_ == _ [notation, in Coq.Structures.Equalities]
eqo [definition, in Coq.Numbers.Cyclic.Int63.Int63]
eqo_diff [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eqo_refl [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
EqProperties [module, in Coq.FSets.FSetEqProperties]
EqProperties [module, in Coq.MSets.MSetEqProperties]
eqrel [definition, in Coq.ssr.ssrfun]
eqR_Qeq [lemma, in Coq.QArith.Qreals]
eqs [definition, in Coq.Numbers.Cyclic.Int63.Int63]
EqShiftL [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_incr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_incrbis [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_shiftr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_twice_plus_one [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_i2l [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_twice [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_firstr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_le [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_size [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_zero [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
eqst [constructor, in Coq.Lists.Streams]
EqSt [inductive, in Coq.Lists.Streams]
Eqsth [lemma, in Coq.setoid_ring.Ring_theory]
eqst_ntheq [lemma, in Coq.Lists.Streams]
EqSt_reflex [lemma, in Coq.Lists.Streams]
Equal [constructor, in Coq.micromega.RingMicromega]
Equalities [library]
EqualitiesFacts [library]
equality [projection, in Coq.setoid_ring.Algebra_syntax]
Equality [record, in Coq.setoid_ring.Algebra_syntax]
equality [constructor, in Coq.setoid_ring.Algebra_syntax]
Equality [inductive, in Coq.setoid_ring.Algebra_syntax]
Equality [library]
equalityb [projection, in Coq.setoid_ring.Ncring_polynom]
Equalityb [record, in Coq.setoid_ring.Ncring_polynom]
equalityb_pol [instance, in Coq.setoid_ring.Ncring_polynom]
equalityb_coef [instance, in Coq.setoid_ring.Ncring_polynom]
EqualityModulo [section, in Coq.ZArith.Zdiv]
EqualityModulo.N [variable, in Coq.ZArith.Zdiv]
_ == _ [notation, in Coq.ZArith.Zdiv]
EqualityType [module, in Coq.Structures.Equalities]
EqualityType [module, in Coq.Structures.DecidableType]
EqualityTypeBoth [module, in Coq.Structures.Equalities]
EqualityTypeBoth' [module, in Coq.Structures.Equalities]
EqualityTypeOrig [module, in Coq.Structures.Equalities]
EqualityTypeOrig' [module, in Coq.Structures.Equalities]
EqualityType' [module, in Coq.Structures.Equalities]
equality_dep2.y [variable, in Coq.Init.Logic]
equality_dep2.x [variable, in Coq.Init.Logic]
equality_dep2.g [variable, in Coq.Init.Logic]
equality_dep2.f [variable, in Coq.Init.Logic]
equality_dep2.B' [variable, in Coq.Init.Logic]
equality_dep2.B [variable, in Coq.Init.Logic]
equality_dep2.A' [variable, in Coq.Init.Logic]
equality_dep2.A [variable, in Coq.Init.Logic]
equality_dep2 [section, in Coq.Init.Logic]
equality_dep.y [variable, in Coq.Init.Logic]
equality_dep.x [variable, in Coq.Init.Logic]
equality_dep.f [variable, in Coq.Init.Logic]
equality_dep.B [variable, in Coq.Init.Logic]
equality_dep.A [variable, in Coq.Init.Logic]
equality_dep [section, in Coq.Init.Logic]
equal_f_dep [lemma, in Coq.Logic.FunctionalExtensionality]
equal_f [lemma, in Coq.Logic.FunctionalExtensionality]
equiv [projection, in Coq.Classes.SetoidClass]
equiv [definition, in Coq.Relations.Relation_Definitions]
equiv [definition, in Coq.Classes.CEquivalence]
equiv [definition, in Coq.Classes.Equivalence]
Equivalence [section, in Coq.Init.Logic]
Equivalence [record, in Coq.Classes.CRelationClasses]
Equivalence [inductive, in Coq.Sets.Relations_1]
equivalence [record, in Coq.Relations.Relation_Definitions]
Equivalence [record, in Coq.Classes.RelationClasses]
Equivalence [library]
Equivalences [section, in Coq.Logic.EqdepFacts]
Equivalences.U [variable, in Coq.Logic.EqdepFacts]
equivalence_default [instance, in Coq.Classes.SetoidTactics]
equivalence_rewrite_crelation [instance, in Coq.Classes.CRelationClasses]
Equivalence_PER [instance, in Coq.Classes.CRelationClasses]
Equivalence_Transitive [projection, in Coq.Classes.CRelationClasses]
Equivalence_Symmetric [projection, in Coq.Classes.CRelationClasses]
Equivalence_Reflexive [projection, in Coq.Classes.CRelationClasses]
equivalence_relP_in [lemma, in Coq.ssr.ssrbool]
equivalence_relP [lemma, in Coq.ssr.ssrbool]
equivalence_rel [definition, in Coq.ssr.ssrbool]
equivalence_rewrite_relation [instance, in Coq.Classes.RelationClasses]
Equivalence_PreOrder [instance, in Coq.Classes.RelationClasses]
Equivalence_PER [instance, in Coq.Classes.RelationClasses]
Equivalence_Transitive [projection, in Coq.Classes.RelationClasses]
Equivalence_Symmetric [projection, in Coq.Classes.RelationClasses]
Equivalence_Reflexive [projection, in Coq.Classes.RelationClasses]
EquivDec [library]
equivlistA [definition, in Coq.Lists.SetoidList]
equivlistA_NoDupA_split [lemma, in Coq.Lists.SetoidList]
equivlistA_app_idem [lemma, in Coq.Lists.SetoidList]
equivlistA_permute_heads [lemma, in Coq.Lists.SetoidList]
equivlistA_double_head [lemma, in Coq.Lists.SetoidList]
equivlistA_nil_eq [lemma, in Coq.Lists.SetoidList]
equivlistA_cons_nil [lemma, in Coq.Lists.SetoidList]
equivlistA_app_proper [instance, in Coq.Lists.SetoidList]
equivlistA_cons_proper [instance, in Coq.Lists.SetoidList]
equivlist_equiv [instance, in Coq.Lists.SetoidList]
equivP [lemma, in Coq.ssr.ssrbool]
equivPif [lemma, in Coq.ssr.ssrbool]
equivPifn [lemma, in Coq.ssr.ssrbool]
Equiv_from_order [lemma, in Coq.Sets.Relations_1_facts]
Equiv_from_preorder [lemma, in Coq.Sets.Relations_1_facts]
equiv_nequiv_trans [lemma, in Coq.Classes.SetoidClass]
equiv_decb [definition, in Coq.Classes.SetoidDec]
equiv_dec [projection, in Coq.Classes.SetoidDec]
equiv_dec [constructor, in Coq.Classes.SetoidDec]
equiv_sym [projection, in Coq.Relations.Relation_Definitions]
equiv_trans [projection, in Coq.Relations.Relation_Definitions]
equiv_refl [projection, in Coq.Relations.Relation_Definitions]
equiv_eqex_eqdep [abbreviation, in Coq.Logic.EqdepFacts]
equiv_transitive [instance, in Coq.Classes.CEquivalence]
equiv_symmetric [instance, in Coq.Classes.CEquivalence]
equiv_reflexive [instance, in Coq.Classes.CEquivalence]
equiv_Tree [definition, in Coq.Sorting.Heap]
equiv_decb [definition, in Coq.Classes.EquivDec]
equiv_dec [projection, in Coq.Classes.EquivDec]
equiv_dec [constructor, in Coq.Classes.EquivDec]
equiv_transitive [instance, in Coq.Classes.Equivalence]
equiv_symmetric [instance, in Coq.Classes.Equivalence]
equiv_reflexive [instance, in Coq.Classes.Equivalence]
eq_subrelation [lemma, in Coq.Classes.Morphisms]
eq_proper_proxy [lemma, in Coq.Classes.Morphisms]
Eq_rect_eq.eq_rect_eq [lemma, in Coq.Logic.Classical_Prop]
Eq_rect_eq [module, in Coq.Logic.Classical_Prop]
eq_IZR [lemma, in Coq.Reals.RIneq]
eq_IZR_R0 [lemma, in Coq.Reals.RIneq]
eq_dep_strictly_stronger_JMeq [lemma, in Coq.Logic.JMeq]
eq_dep_JMeq [lemma, in Coq.Logic.JMeq]
eq_dep_id_JMeq [lemma, in Coq.Logic.JMeq]
eq_Fix_F_sub [lemma, in Coq.Program.Wf]
eq_nth_iff [lemma, in Coq.Vectors.VectorSpec]
eq_incl [lemma, in Coq.micromega.Ztac]
eq_dec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
eq_indd [definition, in Coq.Logic.ChoiceFacts]
eq_ex2_hprop [definition, in Coq.Init.Logic]
eq_ex2 [definition, in Coq.Init.Logic]
eq_ex2_uncurried [definition, in Coq.Init.Logic]
eq_ex_hprop [definition, in Coq.Init.Logic]
eq_ex [definition, in Coq.Init.Logic]
eq_ex_uncurried [definition, in Coq.Init.Logic]
eq_stepl [lemma, in Coq.Init.Logic]
eq_trans_rew_distr [lemma, in Coq.Init.Logic]
eq_trans_sym_distr [lemma, in Coq.Init.Logic]
eq_sym_map_distr [lemma, in Coq.Init.Logic]
eq_trans_map_distr [lemma, in Coq.Init.Logic]
eq_refl_map_distr [lemma, in Coq.Init.Logic]
eq_id_comm_r [lemma, in Coq.Init.Logic]
eq_id_comm_l [lemma, in Coq.Init.Logic]
eq_trans_map [lemma, in Coq.Init.Logic]
eq_trans_assoc [lemma, in Coq.Init.Logic]
eq_trans_sym_inv_r [lemma, in Coq.Init.Logic]
eq_trans_sym_inv_l [lemma, in Coq.Init.Logic]
eq_sym_involutive [lemma, in Coq.Init.Logic]
eq_trans_refl_r [lemma, in Coq.Init.Logic]
eq_trans_refl_l [lemma, in Coq.Init.Logic]
eq_rect_r [definition, in Coq.Init.Logic]
eq_rec_r [definition, in Coq.Init.Logic]
eq_ind_r [definition, in Coq.Init.Logic]
eq_sind_r [definition, in Coq.Init.Logic]
eq_trans_r [lemma, in Coq.Init.Logic]
eq_trans [lemma, in Coq.Init.Logic]
eq_sym [lemma, in Coq.Init.Logic]
eq_refl [constructor, in Coq.Init.Logic]
eq_equivalence [instance, in Coq.Classes.CRelationClasses]
eq_Transitive [instance, in Coq.Classes.CRelationClasses]
eq_Symmetric [instance, in Coq.Classes.CRelationClasses]
eq_Reflexive [instance, in Coq.Classes.CRelationClasses]
eq_sig2_nondep [definition, in Coq.Init.Specif]
eq_sig2_hprop_iff [definition, in Coq.Init.Specif]
eq_sig2_ind [definition, in Coq.Init.Specif]
eq_sig2_rec [definition, in Coq.Init.Specif]
eq_sig2_rect [definition, in Coq.Init.Specif]
eq_sig2_uncurried_iff [definition, in Coq.Init.Specif]
eq_sig2_hprop [definition, in Coq.Init.Specif]
eq_sig2 [definition, in Coq.Init.Specif]
eq_sig2_uncurried [definition, in Coq.Init.Specif]
eq_exist2_uncurried [definition, in Coq.Init.Specif]
eq_sigT2_nondep [definition, in Coq.Init.Specif]
eq_sigT2_hprop_iff [definition, in Coq.Init.Specif]
eq_sigT2_ind [definition, in Coq.Init.Specif]
eq_sigT2_rec [definition, in Coq.Init.Specif]
eq_sigT2_rect [definition, in Coq.Init.Specif]
eq_sigT2_uncurried_iff [definition, in Coq.Init.Specif]
eq_sigT2_hprop [definition, in Coq.Init.Specif]
eq_sigT2 [definition, in Coq.Init.Specif]
eq_sigT2_uncurried [definition, in Coq.Init.Specif]
eq_existT2_uncurried [definition, in Coq.Init.Specif]
eq_sig_hprop_iff [definition, in Coq.Init.Specif]
eq_sig_uncurried_iff [definition, in Coq.Init.Specif]
eq_sig_hprop [definition, in Coq.Init.Specif]
eq_sig_ind [definition, in Coq.Init.Specif]
eq_sig_rec [definition, in Coq.Init.Specif]
eq_sig_rect [definition, in Coq.Init.Specif]
eq_sig [definition, in Coq.Init.Specif]
eq_sig_uncurried [definition, in Coq.Init.Specif]
eq_exist_uncurried [definition, in Coq.Init.Specif]
eq_sigT_nondep [definition, in Coq.Init.Specif]
eq_sigT_hprop_iff [definition, in Coq.Init.Specif]
eq_sigT_ind [definition, in Coq.Init.Specif]
eq_sigT_rec [definition, in Coq.Init.Specif]
eq_sigT_rect [definition, in Coq.Init.Specif]
eq_sigT_uncurried_iff [definition, in Coq.Init.Specif]
eq_sigT_hprop [definition, in Coq.Init.Specif]
eq_sigT [definition, in Coq.Init.Specif]
eq_existT_curried_congr [lemma, in Coq.Init.Specif]
eq_existT_curried_trans [lemma, in Coq.Init.Specif]
eq_existT_curried_map [lemma, in Coq.Init.Specif]
eq_existT_curried [lemma, in Coq.Init.Specif]
eq_sigT_uncurried [definition, in Coq.Init.Specif]
eq_existT_uncurried [definition, in Coq.Init.Specif]
eq_dec [lemma, in Coq.Vectors.Fin]
eq_mem [definition, in Coq.ssr.ssrbool]
eq_dep_eq_dec [lemma, in Coq.Logic.Eqdep_dec]
eq_rect_eq_dec [lemma, in Coq.Logic.Eqdep_dec]
eq_proofs_unicity [lemma, in Coq.Logic.Eqdep_dec]
eq_proofs_unicity_on [lemma, in Coq.Logic.Eqdep_dec]
eq_Dom [definition, in Coq.Reals.Rtopology]
eq_notation [instance, in Coq.setoid_ring.Ncring]
eq_dec [definition, in Coq.Bool.BoolEq]
eq_dec [definition, in Coq.Vectors.VectorEq]
eq_Reflexive [instance, in Coq.ssr.ssrclasses]
eq_setoid [instance, in Coq.Classes.SetoidDec]
eq_bij [lemma, in Coq.ssr.ssrfun]
eq_can [lemma, in Coq.ssr.ssrfun]
eq_inj [lemma, in Coq.ssr.ssrfun]
eq_comp [lemma, in Coq.ssr.ssrfun]
eq_add_S [definition, in Coq.Init.Peano]
eq_S [definition, in Coq.Init.Peano]
eq_dep_non_dep [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq__inj_pairT2 [abbreviation, in Coq.Logic.EqdepFacts]
eq_dep_eq__inj_pair2 [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq_on__inj_pair2_on [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq__UIP [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq_on__UIP_on [lemma, in Coq.Logic.EqdepFacts]
eq_rect_eq__eq_dep_eq [lemma, in Coq.Logic.EqdepFacts]
eq_rect_eq_on__eq_dep_eq_on [lemma, in Coq.Logic.EqdepFacts]
eq_rect_eq__eq_dep1_eq [lemma, in Coq.Logic.EqdepFacts]
eq_rect_eq_on__eq_dep1_eq_on [lemma, in Coq.Logic.EqdepFacts]
Eq_dep_eq [definition, in Coq.Logic.EqdepFacts]
Eq_dep_eq_on [definition, in Coq.Logic.EqdepFacts]
Eq_rect_eq [definition, in Coq.Logic.EqdepFacts]
Eq_rect_eq_on [definition, in Coq.Logic.EqdepFacts]
eq_sig_snd [lemma, in Coq.Logic.EqdepFacts]
eq_sig_fst [lemma, in Coq.Logic.EqdepFacts]
eq_sigT_snd [lemma, in Coq.Logic.EqdepFacts]
eq_sigT_fst [lemma, in Coq.Logic.EqdepFacts]
eq_sigT_sig_eq [lemma, in Coq.Logic.EqdepFacts]
eq_sig_iff_eq_dep [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq_sig [lemma, in Coq.Logic.EqdepFacts]
eq_sig_eq_dep [lemma, in Coq.Logic.EqdepFacts]
eq_sigT_iff_eq_dep [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq_sigT [lemma, in Coq.Logic.EqdepFacts]
eq_sigT_eq_dep [lemma, in Coq.Logic.EqdepFacts]
eq_dep_dep1 [lemma, in Coq.Logic.EqdepFacts]
eq_dep1_dep [lemma, in Coq.Logic.EqdepFacts]
eq_dep1_intro [constructor, in Coq.Logic.EqdepFacts]
eq_dep1 [inductive, in Coq.Logic.EqdepFacts]
eq_indd [definition, in Coq.Logic.EqdepFacts]
eq_dep_trans [lemma, in Coq.Logic.EqdepFacts]
eq_dep_sym [lemma, in Coq.Logic.EqdepFacts]
eq_dep_refl [lemma, in Coq.Logic.EqdepFacts]
eq_dep_intro [constructor, in Coq.Logic.EqdepFacts]
eq_dep [inductive, in Coq.Logic.EqdepFacts]
eq_true_rect_r [lemma, in Coq.Init.Datatypes]
eq_true_rec_r [lemma, in Coq.Init.Datatypes]
eq_true_ind_r [lemma, in Coq.Init.Datatypes]
eq_true [inductive, in Coq.Init.Datatypes]
eq_dep_eq_positive [abbreviation, in Coq.PArith.BinPos]
eq_true_iff_eq [lemma, in Coq.micromega.ZMicromega]
eq_cnf [lemma, in Coq.micromega.ZMicromega]
eq_le_iff [lemma, in Coq.micromega.ZMicromega]
eq_equivalence [instance, in Coq.Classes.RelationClasses]
eq_Transitive [instance, in Coq.Classes.RelationClasses]
eq_Symmetric [instance, in Coq.Classes.RelationClasses]
eq_Reflexive [instance, in Coq.Classes.RelationClasses]
eq_trans_cancel [lemma, in Coq.Logic.HLevels]
eq_bool_prop_elim [lemma, in Coq.Bool.Bool]
eq_bool_prop_intro [lemma, in Coq.Bool.Bool]
eq_true_not_negb [lemma, in Coq.Bool.Bool]
eq_true_negb_classical [lemma, in Coq.Bool.Bool]
eq_true_iff_eq [lemma, in Coq.Bool.Bool]
eq_iff_eq_true [lemma, in Coq.Bool.Bool]
eq_true_false_abs [lemma, in Coq.Bool.Bool]
Eq_rect_eq.eq_rect_eq [axiom, in Coq.Logic.Eqdep]
Eq_rect_eq [module, in Coq.Logic.Eqdep]
eq_nat_dec [abbreviation, in Coq.Arith.Peano_dec]
eq_subrelation [lemma, in Coq.Classes.CMorphisms]
eq_proper_proxy [lemma, in Coq.Classes.CMorphisms]
Eq_ext [lemma, in Coq.setoid_ring.Ring_theory]
Eq_s_ext [lemma, in Coq.setoid_ring.Ring_theory]
eq_nat_decide [lemma, in Coq.Arith.EqNat]
eq_nat_elim [lemma, in Coq.Arith.EqNat]
eq_nat_eq [lemma, in Coq.Arith.EqNat]
eq_eq_nat [lemma, in Coq.Arith.EqNat]
eq_nat_is_eq [lemma, in Coq.Arith.EqNat]
eq_nat_refl [lemma, in Coq.Arith.EqNat]
eq_nat [definition, in Coq.Arith.EqNat]
Eq' [module, in Coq.Structures.Equalities]
eq0 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
eq0_cnf [lemma, in Coq.micromega.RingMicromega]
eq31_correct [lemma, in Coq.Numbers.Cyclic.Int63.Ring63]
erefl [abbreviation, in Coq.ssr.ssrfun]
error [definition, in Coq.Init.Specif]
esym [definition, in Coq.ssr.ssrfun]
esymK [lemma, in Coq.ssr.ssrfun]
eta [lemma, in Coq.Vectors.VectorSpec]
eta_expansion [lemma, in Coq.Logic.FunctionalExtensionality]
eta_expansion_dep [lemma, in Coq.Logic.FunctionalExtensionality]
etrans [definition, in Coq.ssr.ssrfun]
etrans_id [lemma, in Coq.ssr.ssrfun]
euclid [lemma, in Coq.ZArith.Znumtheory]
Euclid [inductive, in Coq.ZArith.Znumtheory]
Euclid [library]
euclidian_division [lemma, in Coq.Reals.ArithProp]
EuclidSpec [module, in Coq.Numbers.Integer.Abstract.ZDivEucl]
EuclidSpec.mod_always_pos [axiom, in Coq.Numbers.Integer.Abstract.ZDivEucl]
euclid_rec [lemma, in Coq.ZArith.Znumtheory]
Euclid_intro [constructor, in Coq.ZArith.Znumtheory]
eucl_dev [lemma, in Coq.Arith.Euclid]
euler [definition, in Coq.Numbers.Cyclic.Int31.Int31]
EUn [definition, in Coq.Reals.Rseries]
EUn_noempty [lemma, in Coq.Reals.Rseries]
eval [definition, in Coq.btauto.Algebra]
eval [definition, in Coq.micromega.ZMicromega]
Evaluation [section, in Coq.btauto.Algebra]
eval_suffix_compat [lemma, in Coq.btauto.Algebra]
eval_extensional_eq_compat [lemma, in Coq.btauto.Algebra]
eval_null_zero [lemma, in Coq.btauto.Algebra]
eval_proof [definition, in Coq.micromega.Ztac]
eval_nformula_bound_var [lemma, in Coq.micromega.ZMicromega]
eval_nformula_mk_eq_pos [lemma, in Coq.micromega.ZMicromega]
eval_Psatz_sound [lemma, in Coq.micromega.ZMicromega]
eval_Psatz [definition, in Coq.micromega.ZMicromega]
eval_pol_Pc [lemma, in Coq.micromega.ZMicromega]
eval_pol_norm [lemma, in Coq.micromega.ZMicromega]
eval_pol_mul [lemma, in Coq.micromega.ZMicromega]
eval_pol_add [lemma, in Coq.micromega.ZMicromega]
eval_pol_sub [lemma, in Coq.micromega.ZMicromega]
eval_pol [definition, in Coq.micromega.ZMicromega]
eval_nformula [definition, in Coq.micromega.ZMicromega]
eval_expr [definition, in Coq.micromega.ZMicromega]
eval_bf_map [lemma, in Coq.micromega.Tauto]
eval_bf [definition, in Coq.micromega.Tauto]
eval_cnf_cons_iff [lemma, in Coq.micromega.Tauto]
eval_cnf_cons [lemma, in Coq.micromega.Tauto]
eval_opt_clause [definition, in Coq.micromega.Tauto]
eval_cnf_and_opt [lemma, in Coq.micromega.Tauto]
eval_cnf_tt [lemma, in Coq.micromega.Tauto]
eval_cnf_ff [lemma, in Coq.micromega.Tauto]
eval_cnf_app [lemma, in Coq.micromega.Tauto]
eval_cnf [definition, in Coq.micromega.Tauto]
eval_clause [definition, in Coq.micromega.Tauto]
eval_tt [definition, in Coq.micromega.Tauto]
eval_f_morph [lemma, in Coq.micromega.Tauto]
eval_f [definition, in Coq.micromega.Tauto]
eval_formulaSC [lemma, in Coq.micromega.RingMicromega]
eval_pexprSC [lemma, in Coq.micromega.RingMicromega]
eval_sformula [definition, in Coq.micromega.RingMicromega]
eval_sexpr [definition, in Coq.micromega.RingMicromega]
eval_nformula_dec [lemma, in Coq.micromega.RingMicromega]
eval_pol_norm [lemma, in Coq.micromega.RingMicromega]
eval_pol_opp [lemma, in Coq.micromega.RingMicromega]
eval_pol_mul [lemma, in Coq.micromega.RingMicromega]
eval_pol_add [lemma, in Coq.micromega.RingMicromega]
eval_pol_sub [lemma, in Coq.micromega.RingMicromega]
eval_formula [definition, in Coq.micromega.RingMicromega]
eval_pexpr [definition, in Coq.micromega.RingMicromega]
eval_op2 [definition, in Coq.micromega.RingMicromega]
eval_Psatz_Sound [lemma, in Coq.micromega.RingMicromega]
eval_Psatz [definition, in Coq.micromega.RingMicromega]
eval_nformula [definition, in Coq.micromega.RingMicromega]
eval_op1 [definition, in Coq.micromega.RingMicromega]
eval_pol [definition, in Coq.micromega.RingMicromega]
even [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
Even [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
even [definition, in Coq.Init.Nat]
even [inductive, in Coq.Arith.Even]
Even [library]
eventually [definition, in Coq.Arith.Between]
event_O [lemma, in Coq.Arith.Between]
Even_equiv [lemma, in Coq.Numbers.Natural.Peano.NPeano]
even_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
even_2n [lemma, in Coq.Arith.Div2]
even_double [lemma, in Coq.Arith.Div2]
even_odd_double [lemma, in Coq.Arith.Div2]
even_odd_div2 [lemma, in Coq.Arith.Div2]
even_div2 [lemma, in Coq.Arith.Div2]
even_mult_inv_l [lemma, in Coq.Arith.Even]
even_mult_inv_r [lemma, in Coq.Arith.Even]
even_mult_r [lemma, in Coq.Arith.Even]
even_mult_l [lemma, in Coq.Arith.Even]
even_mult_aux [lemma, in Coq.Arith.Even]
even_plus_odd_inv_l [lemma, in Coq.Arith.Even]
even_plus_odd_inv_r [lemma, in Coq.Arith.Even]
even_plus_even_inv_l [lemma, in Coq.Arith.Even]
even_plus_even_inv_r [lemma, in Coq.Arith.Even]
even_plus_aux [lemma, in Coq.Arith.Even]
even_even_plus [lemma, in Coq.Arith.Even]
even_plus_split [lemma, in Coq.Arith.Even]
even_odd_dec [lemma, in Coq.Arith.Even]
even_or_odd [lemma, in Coq.Arith.Even]
even_equiv [lemma, in Coq.Arith.Even]
even_S [constructor, in Coq.Arith.Even]
even_O [constructor, in Coq.Arith.Even]
even_odd_cor [lemma, in Coq.Reals.ArithProp]
ex [section, in Coq.Init.Logic]
ex [inductive, in Coq.Init.Logic]
Examples [section, in Coq.QArith.Qfield]
Examples.ex1 [variable, in Coq.QArith.Qfield]
Examples.ex10 [variable, in Coq.QArith.Qfield]
Examples.ex2 [variable, in Coq.QArith.Qfield]
Examples.ex3 [variable, in Coq.QArith.Qfield]
Examples.ex4 [variable, in Coq.QArith.Qfield]
Examples.ex5 [variable, in Coq.QArith.Qfield]
Examples.ex6 [variable, in Coq.QArith.Qfield]
Examples.ex7 [variable, in Coq.QArith.Qfield]
Examples.ex8 [variable, in Coq.QArith.Qfield]
Examples.ex9 [variable, in Coq.QArith.Qfield]
Example_of_undecidable_predicate_with_the_minimization_property.P [variable, in Coq.Logic.ClassicalFacts]
Example_of_undecidable_predicate_with_the_minimization_property.s [variable, in Coq.Logic.ClassicalFacts]
Example_of_undecidable_predicate_with_the_minimization_property [section, in Coq.Logic.ClassicalFacts]
Exc [definition, in Coq.Init.Specif]
Exc [section, in Coq.Init.Specif]
except [definition, in Coq.Init.Specif]
ExcludedMiddle [definition, in Coq.Logic.ChoiceFacts]
excluded_middle_iff_representative_boolean_partition [lemma, in Coq.Logic.ClassicalFacts]
excluded_middle_imp_representative_boolean_partition [lemma, in Coq.Logic.ClassicalFacts]
excluded_middle_entails_unrestricted_minimization [lemma, in Coq.Logic.ClassicalFacts]
Excluded_middle_entails_unrestricted_minimization.em [variable, in Coq.Logic.ClassicalFacts]
Excluded_middle_entails_unrestricted_minimization [section, in Coq.Logic.ClassicalFacts]
excluded_middle_independence_general_premises [lemma, in Coq.Logic.ClassicalFacts]
excluded_middle_Godel_Dummett [lemma, in Coq.Logic.ClassicalFacts]
excluded_middle [definition, in Coq.Logic.ClassicalFacts]
excluded_middle_informative [lemma, in Coq.Logic.ClassicalEpsilon]
excluded_middle_informative [lemma, in Coq.Logic.ClassicalDescription]
Exc.A [variable, in Coq.Init.Specif]
exist [constructor, in Coq.Init.Specif]
Exists [inductive, in Coq.Lists.Streams]
Exists [inductive, in Coq.Vectors.VectorDef]
Exists [inductive, in Coq.Lists.List]
existsb [definition, in Coq.Lists.List]
existsb_app [lemma, in Coq.Lists.List]
existsb_nth [lemma, in Coq.Lists.List]
existsb_exists [lemma, in Coq.Lists.List]
Exists_map [lemma, in Coq.Lists.Streams]
exists_in_int [lemma, in Coq.Arith.Between]
exists_S_le [lemma, in Coq.Arith.Between]
exists_lt [lemma, in Coq.Arith.Between]
exists_le_S [lemma, in Coq.Arith.Between]
exists_le [constructor, in Coq.Arith.Between]
exists_S [constructor, in Coq.Arith.Between]
exists_between [inductive, in Coq.Arith.Between]
exists_inhabited [lemma, in Coq.Init.Logic]
exists_to_inhabited_sig [lemma, in Coq.Init.Specif]
exists_beq_eq [definition, in Coq.Bool.BoolEq]
Exists_cons_tl [constructor, in Coq.Vectors.VectorDef]
Exists_cons_hd [constructor, in Coq.Vectors.VectorDef]
exists_atan_in_frame [lemma, in Coq.Reals.Ratan]
Exists_Forall_neg [lemma, in Coq.Lists.List]
Exists_impl [lemma, in Coq.Lists.List]
Exists_dec [lemma, in Coq.Lists.List]
Exists_cons [lemma, in Coq.Lists.List]
Exists_nil [lemma, in Coq.Lists.List]
Exists_exists [lemma, in Coq.Lists.List]
Exists_cons_tl [constructor, in Coq.Lists.List]
Exists_cons_hd [constructor, in Coq.Lists.List]
Exists_Forall.One_predicate.P [variable, in Coq.Lists.List]
Exists_Forall.One_predicate [section, in Coq.Lists.List]
Exists_Forall.A [variable, in Coq.Lists.List]
Exists_Forall [section, in Coq.Lists.List]
exists_last [lemma, in Coq.Lists.List]
Exists2 [inductive, in Coq.Vectors.VectorDef]
Exists2_cons_tl [constructor, in Coq.Vectors.VectorDef]
Exists2_cons_hd [constructor, in Coq.Vectors.VectorDef]
existT [constructor, in Coq.Init.Specif]
existT2 [constructor, in Coq.Init.Specif]
exist_cos0 [lemma, in Coq.Reals.Rtrigo_def]
exist_sin [lemma, in Coq.Reals.Rtrigo_def]
exist_cos [lemma, in Coq.Reals.Rtrigo_def]
exist_exp0 [lemma, in Coq.Reals.Rtrigo_def]
exist_exp [lemma, in Coq.Reals.Rtrigo_def]
exist_PI [lemma, in Coq.Reals.AltSeries]
exist2 [constructor, in Coq.Init.Specif]
exp [definition, in Coq.Reals.Rtrigo_def]
expose_mem_pred [definition, in Coq.ssr.ssrbool]
expose_simpl_pred [definition, in Coq.ssr.ssrbool]
ExProof [constructor, in Coq.micromega.ZMicromega]
exp_pos [lemma, in Coq.Reals.Exp_prop]
exp_pos_pos [lemma, in Coq.Reals.Exp_prop]
exp_plus [lemma, in Coq.Reals.Exp_prop]
exp_form [lemma, in Coq.Reals.Exp_prop]
exp_0 [lemma, in Coq.Reals.Rtrigo_def]
exp_cof_no_R0 [lemma, in Coq.Reals.Rtrigo_def]
exp_in [definition, in Coq.Reals.Rtrigo_def]
exp_Ropp [lemma, in Coq.Reals.Rpower]
exp_inv [lemma, in Coq.Reals.Rpower]
exp_ln [lemma, in Coq.Reals.Rpower]
exp_ineq1 [lemma, in Coq.Reals.Rpower]
exp_lt_inv [lemma, in Coq.Reals.Rpower]
exp_increasing [lemma, in Coq.Reals.Rpower]
exp_le_3 [lemma, in Coq.Reals.Rpower]
Exp_prop [library]
extended_euclid_algorithm.b [variable, in Coq.ZArith.Znumtheory]
extended_euclid_algorithm.a [variable, in Coq.ZArith.Znumtheory]
extended_euclid_algorithm [section, in Coq.ZArith.Znumtheory]
Extension [lemma, in Coq.Sets.Constructive_sets]
ExtensionalEpsilon_imp_EM.epsilon_extensionality [variable, in Coq.Logic.Diaconescu]
ExtensionalEpsilon_imp_EM.epsilon_spec [variable, in Coq.Logic.Diaconescu]
ExtensionalEpsilon_imp_EM.epsilon [variable, in Coq.Logic.Diaconescu]
ExtensionalEpsilon_imp_EM [section, in Coq.Logic.Diaconescu]
ExtensionalEquality [section, in Coq.ssr.ssrfun]
ExtensionalEquality.A [variable, in Coq.ssr.ssrfun]
ExtensionalEquality.B [variable, in Coq.ssr.ssrfun]
ExtensionalEquality.C [variable, in Coq.ssr.ssrfun]
ExtensionalFunctionRepresentative [abbreviation, in Coq.Logic.ChoiceFacts]
ExtensionalFunctionRepresentative [library]
ExtensionalityFacts [library]
Extensionality_Ensembles [axiom, in Coq.Sets.Ensembles]
ExtensionalPredicateRepresentative [abbreviation, in Coq.Logic.ChoiceFacts]
ExtensionalPropositionRepresentative [abbreviation, in Coq.Logic.ChoiceFacts]
extensional_epsilon_imp_EM [lemma, in Coq.Logic.Diaconescu]
extensional_function_representative [axiom, in Coq.Logic.ExtensionalFunctionRepresentative]
external_view [inductive, in Coq.ssr.ssreflect]
Extraction [library]
extract_hyps_app [lemma, in Coq.micromega.RingMicromega]
extract_hyps [definition, in Coq.micromega.RingMicromega]
ExtrHaskellBasic [library]
ExtrHaskellNatInt [library]
ExtrHaskellNatInteger [library]
ExtrHaskellNatNum [library]
ExtrHaskellString [library]
ExtrHaskellZInt [library]
ExtrHaskellZInteger [library]
ExtrHaskellZNum [library]
ExtrOcamlBasic [library]
ExtrOcamlBigIntConv [library]
ExtrOCamlFloats [library]
ExtrOcamlIntConv [library]
ExtrOCamlInt63 [library]
ExtrOcamlNatBigInt [library]
ExtrOcamlNatInt [library]
ExtrOcamlString [library]
ExtrOcamlZBigInt [library]
ExtrOcamlZInt [library]
ext_prop_dep_proof_irrel_cic [lemma, in Coq.Logic.ClassicalFacts]
ext_prop_dep_proof_irrel_cc [lemma, in Coq.Logic.ClassicalFacts]
ext_prop_dep_proof_irrel_gen [lemma, in Coq.Logic.ClassicalFacts]
ext_prop_fixpoint [lemma, in Coq.Logic.ClassicalFacts]
ext_in_filter [lemma, in Coq.Lists.List]
ext_in_map [lemma, in Coq.Lists.List]
ex_not_not_all [lemma, in Coq.Logic.Classical_Pred_Type]
ex_intro2 [constructor, in Coq.Init.Logic]
ex_proj2 [definition, in Coq.Init.Logic]
ex_proj1 [definition, in Coq.Init.Logic]
ex_intro [constructor, in Coq.Init.Logic]
ex_flip_impl_morphism [instance, in Coq.Classes.Morphisms_Prop]
ex_impl_morphism [instance, in Coq.Classes.Morphisms_Prop]
ex_iff_morphism [instance, in Coq.Classes.Morphisms_Prop]
ex2 [section, in Coq.Init.Logic]
ex2 [inductive, in Coq.Init.Logic]
E_Or [constructor, in Coq.rtauto.Rtauto]
E_And [constructor, in Coq.rtauto.Rtauto]
E_False [constructor, in Coq.rtauto.Rtauto]
E_Arrow [constructor, in Coq.rtauto.Rtauto]
E1 [definition, in Coq.Reals.Exp_prop]
E1_cvg [lemma, in Coq.Reals.Exp_prop]
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (23166 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (950 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (746 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1491 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (545 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10708 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (946 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (603 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (461 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (291 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (473 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (760 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1145 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (3885 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (162 entries) |