Library Coq.funind.Recdef
Require Export Coq.funind.FunInd.
Require Import PeanoNat.
Require Compare_dec.
Require Wf_nat.
Section Iter.
Variable A : Type.
Fixpoint iter (n : nat) : (A -> A) -> A -> A :=
fun (fl : A -> A) (def : A) =>
match n with
| O => def
| S m => fl (iter m fl def)
end.
End Iter.
Theorem le_lt_SS x y : x <= y -> x < S (S y).
Theorem Splus_lt x y : y < S (x + y).
Theorem SSplus_lt x y : x < S (S (x + y)).
Inductive max_type (m n:nat) : Set :=
cmt : forall v, m <= v -> n <= v -> max_type m n.
Definition max m n : max_type m n.
Definition Acc_intro_generator_function := fun A R => @Acc_intro_generator A R 100.