Library Coq.micromega.ZifyInst
Require Import Arith Max Min BinInt BinNat Znat Nnat.
Require Import ZifyClasses.
Local Open Scope Z_scope.
Ltac refl :=
abstract (intros ; match goal with
| |- context[@inj _ _ ?X] => unfold X, inj
end ; reflexivity).
Instance Inj_Z_Z : InjTyp Z Z :=
mkinj _ _ (fun x => x) (fun x => True ) (fun _ => I).
Add InjTyp Inj_Z_Z.
Support for nat
Instance Inj_nat_Z : InjTyp nat Z :=
mkinj _ _ Z.of_nat (fun x => 0 <= x ) Nat2Z.is_nonneg.
Add InjTyp Inj_nat_Z.
Instance Op_ge : BinRel ge :=
{| TR := Z.ge; TRInj := Nat2Z.inj_ge |}.
Add BinRel Op_ge.
Instance Op_lt : BinRel lt :=
{| TR := Z.lt; TRInj := Nat2Z.inj_lt |}.
Add BinRel Op_lt.
Instance Op_Nat_lt : BinRel Nat.lt := Op_lt.
Add BinRel Op_Nat_lt.
Instance Op_gt : BinRel gt :=
{| TR := Z.gt; TRInj := Nat2Z.inj_gt |}.
Add BinRel Op_gt.
Instance Op_le : BinRel le :=
{| TR := Z.le; TRInj := Nat2Z.inj_le |}.
Add BinRel Op_le.
Instance Op_Nat_le : BinRel Nat.le := Op_le.
Add BinRel Op_Nat_le.
Instance Op_eq_nat : BinRel (@eq nat) :=
{| TR := @eq Z ; TRInj := fun x y : nat => iff_sym (Nat2Z.inj_iff x y) |}.
Add BinRel Op_eq_nat.
Instance Op_Nat_eq : BinRel (Nat.eq) := Op_eq_nat.
Add BinRel Op_Nat_eq.
Instance Op_plus : BinOp Nat.add :=
{| TBOp := Z.add; TBOpInj := Nat2Z.inj_add |}.
Add BinOp Op_plus.
Instance Op_sub : BinOp Nat.sub :=
{| TBOp := fun n m => Z.max 0 (n - m) ; TBOpInj := Nat2Z.inj_sub_max |}.
Add BinOp Op_sub.
Instance Op_mul : BinOp Nat.mul :=
{| TBOp := Z.mul ; TBOpInj := Nat2Z.inj_mul |}.
Add BinOp Op_mul.
Instance Op_min : BinOp Nat.min :=
{| TBOp := Z.min ; TBOpInj := Nat2Z.inj_min |}.
Add BinOp Op_min.
Instance Op_max : BinOp Nat.max :=
{| TBOp := Z.max ; TBOpInj := Nat2Z.inj_max |}.
Add BinOp Op_max.
Instance Op_pred : UnOp Nat.pred :=
{| TUOp := fun n => Z.max 0 (n - 1) ; TUOpInj := Nat2Z.inj_pred_max |}.
Add UnOp Op_pred.
Instance Op_S : UnOp S :=
{| TUOp := fun x => Z.add x 1 ; TUOpInj := Nat2Z.inj_succ |}.
Add UnOp Op_S.
Instance Op_O : CstOp O :=
{| TCst := Z0 ; TCstInj := eq_refl (Z.of_nat 0) |}.
Add CstOp Op_O.
Instance Op_Z_abs_nat : UnOp Z.abs_nat :=
{ TUOp := Z.abs ; TUOpInj := Zabs2Nat.id_abs }.
Add UnOp Op_Z_abs_nat.
Support for positive
Instance Inj_pos_Z : InjTyp positive Z :=
{| inj := Zpos ; pred := (fun x => 0 < x ) ; cstr := Pos2Z.pos_is_pos |}.
Add InjTyp Inj_pos_Z.
Instance Op_pos_to_nat : UnOp Pos.to_nat :=
{TUOp := (fun x => x); TUOpInj := positive_nat_Z}.
Add UnOp Op_pos_to_nat.
Instance Inj_N_Z : InjTyp N Z :=
mkinj _ _ Z.of_N (fun x => 0 <= x ) N2Z.is_nonneg.
Add InjTyp Inj_N_Z.
Instance Op_N_to_nat : UnOp N.to_nat :=
{ TUOp := fun x => x ; TUOpInj := N_nat_Z }.
Add UnOp Op_N_to_nat.
Instance Op_pos_ge : BinRel Pos.ge :=
{| TR := Z.ge; TRInj := fun x y => iff_refl (Z.pos x >= Z.pos y) |}.
Add BinRel Op_pos_ge.
Instance Op_pos_lt : BinRel Pos.lt :=
{| TR := Z.lt; TRInj := fun x y => iff_refl (Z.pos x < Z.pos y) |}.
Add BinRel Op_pos_lt.
Instance Op_pos_gt : BinRel Pos.gt :=
{| TR := Z.gt; TRInj := fun x y => iff_refl (Z.pos x > Z.pos y) |}.
Add BinRel Op_pos_gt.
Instance Op_pos_le : BinRel Pos.le :=
{| TR := Z.le; TRInj := fun x y => iff_refl (Z.pos x <= Z.pos y) |}.
Add BinRel Op_pos_le.
Lemma eq_pos_inj : forall (x y:positive), x = y <-> Z.pos x = Z.pos y.
Instance Op_eq_pos : BinRel (@eq positive) :=
{ TR := @eq Z ; TRInj := eq_pos_inj }.
Add BinRel Op_eq_pos.
Instance Op_Z_of_N : UnOp Z.of_N :=
{ TUOp := (fun x => x) ; TUOpInj := fun x => eq_refl (Z.of_N x) }.
Add UnOp Op_Z_of_N.
Instance Op_Z_to_N : UnOp Z.to_N :=
{ TUOp := fun x => Z.max 0 x ; TUOpInj := ltac:(now intro x; destruct x) }.
Add UnOp Op_Z_to_N.
Instance Op_Z_neg : UnOp Z.neg :=
{ TUOp := Z.opp ; TUOpInj := (fun x => eq_refl (Zneg x))}.
Add UnOp Op_Z_neg.
Instance Op_Z_pos : UnOp Z.pos :=
{ TUOp := (fun x => x) ; TUOpInj := (fun x => eq_refl (Z.pos x))}.
Add UnOp Op_Z_pos.
Instance Op_pos_succ : UnOp Pos.succ :=
{ TUOp := fun x => x + 1; TUOpInj := Pos2Z.inj_succ }.
Add UnOp Op_pos_succ.
Instance Op_pos_pred_double : UnOp Pos.pred_double :=
{ TUOp := fun x => 2 * x - 1; TUOpInj := ltac:(refl) }.
Add UnOp Op_pos_pred_double.
Instance Op_pos_pred : UnOp Pos.pred :=
{ TUOp := fun x => Z.max 1 (x - 1) ;
TUOpInj := ltac :
(intros;
rewrite <- Pos.sub_1_r;
apply Pos2Z.inj_sub_max) }.
Add UnOp Op_pos_pred.
Instance Op_pos_predN : UnOp Pos.pred_N :=
{ TUOp := fun x => x - 1 ;
TUOpInj := ltac: (now destruct x; rewrite N.pos_pred_spec) }.
Add UnOp Op_pos_predN.
Instance Op_pos_of_succ_nat : UnOp Pos.of_succ_nat :=
{ TUOp := fun x => x + 1 ; TUOpInj := Zpos_P_of_succ_nat }.
Add UnOp Op_pos_of_succ_nat.
Instance Op_pos_of_nat : UnOp Pos.of_nat :=
{ TUOp := fun x => Z.max 1 x ;
TUOpInj := ltac: (now destruct x;
[|rewrite <- Pos.of_nat_succ, <- (Nat2Z.inj_max 1)]) }.
Add UnOp Op_pos_of_nat.
Instance Op_pos_add : BinOp Pos.add :=
{ TBOp := Z.add ; TBOpInj := ltac: (refl) }.
Add BinOp Op_pos_add.
Instance Op_pos_add_carry : BinOp Pos.add_carry :=
{ TBOp := fun x y => x + y + 1 ;
TBOpInj := ltac:(now intros; rewrite Pos.add_carry_spec, Pos2Z.inj_succ) }.
Add BinOp Op_pos_add_carry.
Instance Op_pos_sub : BinOp Pos.sub :=
{ TBOp := fun n m => Z.max 1 (n - m) ;TBOpInj := Pos2Z.inj_sub_max }.
Add BinOp Op_pos_sub.
Instance Op_pos_mul : BinOp Pos.mul :=
{ TBOp := Z.mul ; TBOpInj := ltac: (refl) }.
Add BinOp Op_pos_mul.
Instance Op_pos_min : BinOp Pos.min :=
{ TBOp := Z.min ; TBOpInj := Pos2Z.inj_min }.
Add BinOp Op_pos_min.
Instance Op_pos_max : BinOp Pos.max :=
{ TBOp := Z.max ; TBOpInj := Pos2Z.inj_max }.
Add BinOp Op_pos_max.
Instance Op_pos_pow : BinOp Pos.pow :=
{ TBOp := Z.pow ; TBOpInj := Pos2Z.inj_pow }.
Add BinOp Op_pos_pow.
Instance Op_pos_square : UnOp Pos.square :=
{ TUOp := Z.square ; TUOpInj := Pos2Z.inj_square }.
Add UnOp Op_pos_square.
Instance Op_xO : UnOp xO :=
{ TUOp := fun x => 2 * x ; TUOpInj := ltac: (refl) }.
Add UnOp Op_xO.
Instance Op_xI : UnOp xI :=
{ TUOp := fun x => 2 * x + 1 ; TUOpInj := ltac: (refl) }.
Add UnOp Op_xI.
Instance Op_xH : CstOp xH :=
{ TCst := 1%Z ; TCstInj := ltac:(refl)}.
Add CstOp Op_xH.
Instance Op_Z_of_nat : UnOp Z.of_nat:=
{ TUOp := fun x => x ; TUOpInj := (fun x : nat => @eq_refl Z (Z.of_nat x)) }.
Add UnOp Op_Z_of_nat.
Instance Op_N_ge : BinRel N.ge :=
{| TR := Z.ge ; TRInj := N2Z.inj_ge |}.
Add BinRel Op_N_ge.
Instance Op_N_lt : BinRel N.lt :=
{| TR := Z.lt ; TRInj := N2Z.inj_lt |}.
Add BinRel Op_N_lt.
Instance Op_N_gt : BinRel N.gt :=
{| TR := Z.gt ; TRInj := N2Z.inj_gt |}.
Add BinRel Op_N_gt.
Instance Op_N_le : BinRel N.le :=
{| TR := Z.le ; TRInj := N2Z.inj_le |}.
Add BinRel Op_N_le.
Instance Op_eq_N : BinRel (@eq N) :=
{| TR := @eq Z ; TRInj := fun x y : N => iff_sym (N2Z.inj_iff x y) |}.
Add BinRel Op_eq_N.
Instance Op_N_N0 : CstOp N0 :=
{ TCst := Z0 ; TCstInj := eq_refl }.
Add CstOp Op_N_N0.
Instance Op_N_Npos : UnOp Npos :=
{ TUOp := (fun x => x) ; TUOpInj := ltac:(refl) }.
Add UnOp Op_N_Npos.
Instance Op_N_of_nat : UnOp N.of_nat :=
{ TUOp := fun x => x ; TUOpInj := nat_N_Z }.
Add UnOp Op_N_of_nat.
Instance Op_Z_abs_N : UnOp Z.abs_N :=
{ TUOp := Z.abs ; TUOpInj := N2Z.inj_abs_N }.
Add UnOp Op_Z_abs_N.
Instance Op_N_pos : UnOp N.pos :=
{ TUOp := fun x => x ; TUOpInj := ltac:(refl)}.
Add UnOp Op_N_pos.
Instance Op_N_add : BinOp N.add :=
{| TBOp := Z.add ; TBOpInj := N2Z.inj_add |}.
Add BinOp Op_N_add.
Instance Op_N_min : BinOp N.min :=
{| TBOp := Z.min ; TBOpInj := N2Z.inj_min |}.
Add BinOp Op_N_min.
Instance Op_N_max : BinOp N.max :=
{| TBOp := Z.max ; TBOpInj := N2Z.inj_max |}.
Add BinOp Op_N_max.
Instance Op_N_mul : BinOp N.mul :=
{| TBOp := Z.mul ; TBOpInj := N2Z.inj_mul |}.
Add BinOp Op_N_mul.
Instance Op_N_sub : BinOp N.sub :=
{| TBOp := fun x y => Z.max 0 (x - y) ; TBOpInj := N2Z.inj_sub_max|}.
Add BinOp Op_N_sub.
Instance Op_N_div : BinOp N.div :=
{| TBOp := Z.div ; TBOpInj := N2Z.inj_div|}.
Add BinOp Op_N_div.
Instance Op_N_mod : BinOp N.modulo :=
{| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem|}.
Add BinOp Op_N_mod.
Instance Op_N_pred : UnOp N.pred :=
{ TUOp := fun x => Z.max 0 (x - 1) ;
TUOpInj :=
ltac:(intros; rewrite N.pred_sub; apply N2Z.inj_sub_max) }.
Add UnOp Op_N_pred.
Instance Op_N_succ : UnOp N.succ :=
{| TUOp := fun x => x + 1 ; TUOpInj := N2Z.inj_succ |}.
Add UnOp Op_N_succ.
Support for Z - injected to itself
Instance Op_Z_ge : BinRel Z.ge :=
{| TR := Z.ge ; TRInj := fun x y => iff_refl (x>= y)|}.
Add BinRel Op_Z_ge.
Instance Op_Z_lt : BinRel Z.lt :=
{| TR := Z.lt ; TRInj := fun x y => iff_refl (x < y)|}.
Add BinRel Op_Z_lt.
Instance Op_Z_gt : BinRel Z.gt :=
{| TR := Z.gt ;TRInj := fun x y => iff_refl (x > y)|}.
Add BinRel Op_Z_gt.
Instance Op_Z_le : BinRel Z.le :=
{| TR := Z.le ;TRInj := fun x y => iff_refl (x <= y)|}.
Add BinRel Op_Z_le.
Instance Op_eqZ : BinRel (@eq Z) :=
{ TR := @eq Z ; TRInj := fun x y => iff_refl (x = y) }.
Add BinRel Op_eqZ.
Instance Op_Z_Z0 : CstOp Z0 :=
{ TCst := Z0 ; TCstInj := eq_refl }.
Add CstOp Op_Z_Z0.
Instance Op_Z_add : BinOp Z.add :=
{ TBOp := Z.add ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_add.
Instance Op_Z_min : BinOp Z.min :=
{ TBOp := Z.min ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_min.
Instance Op_Z_max : BinOp Z.max :=
{ TBOp := Z.max ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_max.
Instance Op_Z_mul : BinOp Z.mul :=
{ TBOp := Z.mul ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_mul.
Instance Op_Z_sub : BinOp Z.sub :=
{ TBOp := Z.sub ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_sub.
Instance Op_Z_div : BinOp Z.div :=
{ TBOp := Z.div ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_div.
Instance Op_Z_mod : BinOp Z.modulo :=
{ TBOp := Z.modulo ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_mod.
Instance Op_Z_rem : BinOp Z.rem :=
{ TBOp := Z.rem ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_rem.
Instance Op_Z_quot : BinOp Z.quot :=
{ TBOp := Z.quot ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_quot.
Instance Op_Z_succ : UnOp Z.succ :=
{ TUOp := fun x => x + 1 ; TUOpInj := ltac:(refl) }.
Add UnOp Op_Z_succ.
Instance Op_Z_pred : UnOp Z.pred :=
{ TUOp := fun x => x - 1 ; TUOpInj := ltac:(refl) }.
Add UnOp Op_Z_pred.
Instance Op_Z_opp : UnOp Z.opp :=
{ TUOp := Z.opp ; TUOpInj := ltac:(refl) }.
Add UnOp Op_Z_opp.
Instance Op_Z_abs : UnOp Z.abs :=
{ TUOp := Z.abs ; TUOpInj := ltac:(refl) }.
Add UnOp Op_Z_abs.
Instance Op_Z_sgn : UnOp Z.sgn :=
{ TUOp := Z.sgn ; TUOpInj := ltac:(refl) }.
Add UnOp Op_Z_sgn.
Instance Op_Z_pow : BinOp Z.pow :=
{ TBOp := Z.pow ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_pow.
Instance Op_Z_pow_pos : BinOp Z.pow_pos :=
{ TBOp := Z.pow ; TBOpInj := ltac:(refl) }.
Add BinOp Op_Z_pow_pos.
Instance Op_Z_double : UnOp Z.double :=
{ TUOp := Z.mul 2 ; TUOpInj := Z.double_spec }.
Add UnOp Op_Z_double.
Instance Op_Z_pred_double : UnOp Z.pred_double :=
{ TUOp := fun x => 2 * x - 1 ; TUOpInj := Z.pred_double_spec }.
Add UnOp Op_Z_pred_double.
Instance Op_Z_succ_double : UnOp Z.succ_double :=
{ TUOp := fun x => 2 * x + 1 ; TUOpInj := Z.succ_double_spec }.
Add UnOp Op_Z_succ_double.
Instance Op_Z_square : UnOp Z.square :=
{ TUOp := fun x => x * x ; TUOpInj := Z.square_spec }.
Add UnOp Op_Z_square.
Instance Op_Z_div2 : UnOp Z.div2 :=
{ TUOp := fun x => x / 2 ; TUOpInj := Z.div2_div }.
Add UnOp Op_Z_div2.
Instance Op_Z_quot2 : UnOp Z.quot2 :=
{ TUOp := fun x => Z.quot x 2 ; TUOpInj := Zeven.Zquot2_quot }.
Add UnOp Op_Z_quot2.
Lemma of_nat_to_nat_eq : forall x, Z.of_nat (Z.to_nat x) = Z.max 0 x.
Instance Op_Z_to_nat : UnOp Z.to_nat :=
{ TUOp := fun x => Z.max 0 x ; TUOpInj := of_nat_to_nat_eq }.
Add UnOp Op_Z_to_nat.
Specification of derived operators over Z
Lemma z_max_spec : forall n m,
n <= Z.max n m /\ m <= Z.max n m /\ (Z.max n m = n \/ Z.max n m = m).
Instance ZmaxSpec : BinOpSpec Z.max :=
{| BPred := fun n m r => n < m /\ r = m \/ m <= n /\ r = n ; BSpec := Z.max_spec|}.
Add Spec ZmaxSpec.
Lemma z_min_spec : forall n m,
Z.min n m <= n /\ Z.min n m <= m /\ (Z.min n m = n \/ Z.min n m = m).
Instance ZminSpec : BinOpSpec Z.min :=
{| BPred := fun n m r => n < m /\ r = n \/ m <= n /\ r = m ;
BSpec := Z.min_spec |}.
Add Spec ZminSpec.
Instance ZsgnSpec : UnOpSpec Z.sgn :=
{| UPred := fun n r : Z => 0 < n /\ r = 1 \/ 0 = n /\ r = 0 \/ n < 0 /\ r = - (1) ;
USpec := Z.sgn_spec|}.
Add Spec ZsgnSpec.
Instance ZabsSpec : UnOpSpec Z.abs :=
{| UPred := fun n r: Z => 0 <= n /\ r = n \/ n < 0 /\ r = - n ;
USpec := Z.abs_spec|}.
Add Spec ZabsSpec.
Saturate positivity constraints
Instance SatProd : Saturate Z.mul :=
{|
PArg1 := fun x => 0 <= x;
PArg2 := fun y => 0 <= y;
PRes := fun r => 0 <= r;
SatOk := Z.mul_nonneg_nonneg
|}.
Add Saturate SatProd.
Instance SatProdPos : Saturate Z.mul :=
{|
PArg1 := fun x => 0 < x;
PArg2 := fun y => 0 < y;
PRes := fun r => 0 < r;
SatOk := Z.mul_pos_pos
|}.
Add Saturate SatProdPos.
Lemma pow_pos_strict :
forall a b,
0 < a -> 0 < b -> 0 < a ^ b.
Instance SatPowPos : Saturate Z.pow :=
{|
PArg1 := fun x => 0 < x;
PArg2 := fun y => 0 < y;
PRes := fun r => 0 < r;
SatOk := pow_pos_strict
|}.
Add Saturate SatPowPos.