Library Coq.setoid_ring.Ncring_tac


Require Import List.
Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
Require Export Morphisms Setoid Bool.
Require Import ZArith.
Require Import Algebra_syntax.
Require Export Ncring.
Require Import Ncring_polynom.
Require Import Ncring_initial.

Set Implicit Arguments.

Class nth (R:Type) (t:R) (l:list R) (i:nat).

Instance Ifind0 (R:Type) (t:R) l
 : nth t(t::l) 0.
Defined.

Instance IfindS (R:Type) (t2 t1:R) l i
 {_:nth t1 l i}
 : nth t1 (t2::l) (S i) | 1.
Defined.

Class closed (T:Type) (l:list T).

Instance Iclosed_nil T
 : closed (T:=T) nil.
Defined.

Instance Iclosed_cons T t (l:list T)
 {_:closed l}
 : closed (t::l).
Defined.

Class reify (R:Type)`{Rr:Ring (T:=R)} (e:PExpr Z) (lvar:list R) (t:R).

Instance reify_zero (R:Type) lvar op
 `{Ring (T:=R)(ring0:=op)}
 : reify (ring0:=op)(PEc 0%Z) lvar op.
Defined.

Instance reify_one (R:Type) lvar op
 `{Ring (T:=R)(ring1:=op)}
 : reify (ring1:=op) (PEc 1%Z) lvar op.
Defined.

Instance reifyZ0 (R:Type) lvar
 `{Ring (T:=R)}
 : reify (PEc Z0) lvar Z0|11.
Defined.

Instance reifyZpos (R:Type) lvar (p:positive)
 `{Ring (T:=R)}
 : reify (PEc (Zpos p)) lvar (Zpos p)|11.
Defined.

Instance reifyZneg (R:Type) lvar (p:positive)
 `{Ring (T:=R)}
 : reify (PEc (Zneg p)) lvar (Zneg p)|11.
Defined.

Instance reify_add (R:Type)
  e1 lvar t1 e2 t2 op
 `{Ring (T:=R)(add:=op)}
 {_:reify (add:=op) e1 lvar t1}
 {_:reify (add:=op) e2 lvar t2}
 : reify (add:=op) (PEadd e1 e2) lvar (op t1 t2).
Defined.

Instance reify_mul (R:Type)
  e1 lvar t1 e2 t2 op
 `{Ring (T:=R)(mul:=op)}
 {_:reify (mul:=op) e1 lvar t1}
 {_:reify (mul:=op) e2 lvar t2}
 : reify (mul:=op) (PEmul e1 e2) lvar (op t1 t2)|10.
Defined.

Instance reify_mul_ext (R:Type) `{Ring R}
  lvar (z:Z) e2 t2
 `{Ring (T:=R)}
 {_:reify e2 lvar t2}
 : reify (PEmul (PEc z) e2) lvar
      (@multiplication Z _ _ z t2)|9.
Defined.

Instance reify_sub (R:Type)
 e1 lvar t1 e2 t2 op
 `{Ring (T:=R)(sub:=op)}
 {_:reify (sub:=op) e1 lvar t1}
 {_:reify (sub:=op) e2 lvar t2}
 : reify (sub:=op) (PEsub e1 e2) lvar (op t1 t2).
Defined.

Instance reify_opp (R:Type)
 e1 lvar t1 op
 `{Ring (T:=R)(opp:=op)}
 {_:reify (opp:=op) e1 lvar t1}
 : reify (opp:=op) (PEopp e1) lvar (op t1).
Defined.

Instance reify_pow (R:Type) `{Ring R}
 e1 lvar t1 n
 `{Ring (T:=R)}
 {_:reify e1 lvar t1}
 : reify (PEpow e1 n) lvar (pow_N t1 n)|1.
Defined.

Instance reify_var (R:Type) t lvar i
 `{nth R t lvar i}
 `{Rr: Ring (T:=R)}
 : reify (Rr:= Rr) (PEX Z (Pos.of_succ_nat i))lvar t
 | 100.
Defined.

Class reifylist (R:Type)`{Rr:Ring (T:=R)} (lexpr:list (PExpr Z)) (lvar:list R)
  (lterm:list R).

Instance reify_nil (R:Type) lvar
 `{Rr: Ring (T:=R)}
 : reifylist (Rr:= Rr) nil lvar (@nil R).
Defined.

Instance reify_cons (R:Type) e1 lvar t1 lexpr2 lterm2
 `{Rr: Ring (T:=R)}
 {_:reify (Rr:= Rr) e1 lvar t1}
 {_:reifylist (Rr:= Rr) lexpr2 lvar lterm2}
 : reifylist (Rr:= Rr) (e1::lexpr2) lvar (t1::lterm2).
Defined.

Definition list_reifyl (R:Type) lexpr lvar lterm
 `{Rr: Ring (T:=R)}
 {_:reifylist (Rr:= Rr) lexpr lvar lterm}
 `{closed (T:=R) lvar} := (lvar,lexpr).

Unset Implicit Arguments.

Ltac lterm_goal g :=
  match g with
  | ?t1 == ?t2 => constr:(t1::t2::nil)
  | ?t1 = ?t2 => constr:(t1::t2::nil)
  | (_ ?t1 ?t2) => constr:(t1::t2::nil)
  end.

Lemma Zeqb_ok: forall x y : Z, Zeq_bool x y = true -> x == y.

Ltac reify_goal lvar lexpr lterm:=
  
  match lexpr with
     nil => idtac
   | ?e1::?e2::_ =>
        match goal with
          |- (?op ?u1 ?u2) =>
           change (op
             (@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
                      (fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
                      lvar e1)
             (@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
                      (fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
                      lvar e2))
        end
  end.

Lemma comm: forall (R:Type)`{Ring R}(c : Z) (x : R),
  x * (gen_phiZ c) == (gen_phiZ c) * x.

Ltac ring_gen :=
   match goal with
     |- ?g => let lterm := lterm_goal g in
       match eval red in (list_reifyl (lterm:=lterm)) with
         | (?fv, ?lexpr) =>
           
           reify_goal fv lexpr lterm;
           match goal with
             |- ?g =>
               apply (@ring_correct Z _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
                       (@gen_phiZ _ _ _ _ _ _ _ _ _) _
                 (@comm _ _ _ _ _ _ _ _ _ _) Zeq_bool Zeqb_ok N (fun n:N => n)
                 (@pow_N _ _ _ _ _ _ _ _ _));
               [apply mkpow_th; reflexivity
                 |vm_compute; reflexivity]
           end
       end
   end.

Ltac non_commutative_ring:=
  intros;
  ring_gen.


Ltac ring_simplify_aux lterm fv lexpr hyp :=
    match lterm with
      | ?t0::?lterm =>
    match lexpr with
      | ?e::?le =>
        let t := constr:(@Ncring_polynom.norm_subst
          Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z) Zops Zeq_bool e) in
        
        let te :=
          constr:(@Ncring_polynom.Pphi Z
            _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ fv t) in
        let eq1 := fresh "ring" in
        let nft := eval vm_compute in t in
        let t':= fresh "t" in
        pose (t' := nft);
        assert (eq1 : t = t');
        [vm_cast_no_check (eq_refl t')|
        let eq2 := fresh "ring" in
        assert (eq2:(@Ncring_polynom.PEeval Z
          _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ N (fun n:N => n)
          (@Ring_theory.pow_N _ 1 multiplication) fv e) == te);
        [apply (@Ncring_polynom.norm_subst_ok
          Z _ 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z)
          _ _ 0 1 _+_ _*_ _-_ -_ _==_ _ _ Ncring_initial.gen_phiZ _
          (@comm _ 0 1 _+_ _*_ _-_ -_ _==_ _ _) _ Zeqb_ok);
           apply mkpow_th; reflexivity
          | match hyp with
                | 1%nat => rewrite eq2
                | ?H => try rewrite eq2 in H
              end];
        let P:= fresh "P" in
        match hyp with
          | 1%nat => idtac "ok";
            rewrite eq1;
            pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
              _ Ncring_initial.gen_phiZ fv t');
            match goal with
              |- (?p ?t) => set (P:=p)
            end;
              unfold t' in *; clear t' eq1 eq2; simpl
          | ?H =>
               rewrite eq1 in H;
               pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
                  _ Ncring_initial.gen_phiZ fv t') in H;
               match type of H with
                  | (?p ?t) => set (P:=p) in H
               end;
               unfold t' in *; clear t' eq1 eq2; simpl in H
        end; unfold P in *; clear P
        ]; ring_simplify_aux lterm fv le hyp
      | nil => idtac
    end
    | nil => idtac
    end.

Ltac set_variables fv :=
  match fv with
    | nil => idtac
    | ?t::?fv =>
        let v := fresh "X" in
        set (v:=t) in *; set_variables fv
  end.

Ltac deset n:=
   match n with
    | 0%nat => idtac
    | S ?n1 =>
      match goal with
        | h:= ?v : ?t |- ?g => unfold h in *; clear h; deset n1
      end
   end.


Ltac ring_simplify_gen a hyp :=
  let lterm :=
    match a with
      | _::_ => a
      | _ => constr:(a::nil)
    end in
    match eval red in (list_reifyl (lterm:=lterm)) with
      | (?fv, ?lexpr) => idtac lterm; idtac fv; idtac lexpr;
      let n := eval compute in (length fv) in
      idtac n;
      let lt:=fresh "lt" in
      set (lt:= lterm);
      let lv:=fresh "fv" in
      set (lv:= fv);
      
      set_variables fv;
      let lterm1 := eval unfold lt in lt in
      let lv1 := eval unfold lv in lv in
        idtac lterm1; idtac lv1;
      ring_simplify_aux lterm1 lv1 lexpr hyp;
      clear lt lv;
      
      deset n
    end.

Tactic Notation "non_commutative_ring_simplify" constr(lterm):=
 ring_simplify_gen lterm 1%nat.

Tactic Notation "non_commutative_ring_simplify" constr(lterm) "in" ident(H):=
 ring_simplify_gen lterm H.