Library Coq.Init.Specif


Basic specifications : sets that may contain logical information

Set Implicit Arguments.

Require Import Notations.
Require Import Ltac.
Require Import Datatypes.
Require Import Logic.

Subsets and Sigma-types
(sig A P), or more suggestively {x:A | P x}, denotes the subset of elements of the type A which satisfy the predicate P. Similarly (sig2 A P Q), or {x:A | P x & Q x}, denotes the subset of elements of the type A which satisfy both P and Q.

#[universes(template)]
Inductive sig (A:Type) (P:A -> Prop) : Type :=
    exist : forall x:A, P x -> sig P.


#[universes(template)]
Inductive sig2 (A:Type) (P Q:A -> Prop) : Type :=
    exist2 : forall x:A, P x -> Q x -> sig2 P Q.

(sigT A P), or more suggestively {x:A & (P x)} is a Sigma-type. Similarly for (sigT2 A P Q), also written {x:A & (P x) & (Q x)}.

#[universes(template)]
Inductive sigT (A:Type) (P:A -> Type) : Type :=
    existT : forall x:A, P x -> sigT P.


#[universes(template)]
Inductive sigT2 (A:Type) (P Q:A -> Type) : Type :=
    existT2 : forall x:A, P x -> Q x -> sigT2 P Q.



Notation "{ x | P }" := (sig (fun x => P)) : type_scope.
Notation "{ x | P & Q }" := (sig2 (fun x => P) (fun x => Q)) : type_scope.
Notation "{ x : A | P }" := (sig (A:=A) (fun x => P)) : type_scope.
Notation "{ x : A | P & Q }" := (sig2 (A:=A) (fun x => P) (fun x => Q)) :
  type_scope.
Notation "{ x & P }" := (sigT (fun x => P)) : type_scope.
Notation "{ x & P & Q }" := (sigT2 (fun x => P) (fun x => Q)) : type_scope.
Notation "{ x : A & P }" := (sigT (A:=A) (fun x => P)) : type_scope.
Notation "{ x : A & P & Q }" := (sigT2 (A:=A) (fun x => P) (fun x => Q)) :
  type_scope.

Notation "{ ' pat | P }" := (sig (fun pat => P)) : type_scope.
Notation "{ ' pat | P & Q }" := (sig2 (fun pat => P) (fun pat => Q)) : type_scope.
Notation "{ ' pat : A | P }" := (sig (A:=A) (fun pat => P)) : type_scope.
Notation "{ ' pat : A | P & Q }" := (sig2 (A:=A) (fun pat => P) (fun pat => Q)) :
  type_scope.
Notation "{ ' pat & P }" := (sigT (fun pat => P)) : type_scope.
Notation "{ ' pat & P & Q }" := (sigT2 (fun pat => P) (fun pat => Q)) : type_scope.
Notation "{ ' pat : A & P }" := (sigT (A:=A) (fun pat => P)) : type_scope.
Notation "{ ' pat : A & P & Q }" := (sigT2 (A:=A) (fun pat => P) (fun pat => Q)) :
  type_scope.

Add Printing Let sig.
Add Printing Let sig2.
Add Printing Let sigT.
Add Printing Let sigT2.

Projections of sig
An element y of a subset {x:A | (P x)} is the pair of an a of type A and of a proof h that a satisfies P. Then (proj1_sig y) is the witness a and (proj2_sig y) is the proof of (P a)

Section Subset_projections.

  Variable A : Type.
  Variable P : A -> Prop.

  Definition proj1_sig (e:sig P) := match e with
                                    | exist _ a b => a
                                    end.

  Definition proj2_sig (e:sig P) :=
    match e return P (proj1_sig e) with
    | exist _ a b => b
    end.


End Subset_projections.

sig2 of a predicate can be projected to a sig.
This allows proj1_sig and proj2_sig to be usable with sig2.
The let statements occur in the body of the exist so that proj1_sig of a coerced X : sig2 P Q will unify with let (a, _, _) := X in a

Definition sig_of_sig2 (A : Type) (P Q : A -> Prop) (X : sig2 P Q) : sig P
  := exist P
           (let (a, _, _) := X in a)
           (let (x, p, _) as s return (P (let (a, _, _) := s in a)) := X in p).

Projections of sig2
An element y of a subset {x:A | (P x) & (Q x)} is the triple of an a of type A, a of a proof h that a satisfies P, and a proof h' that a satisfies Q. Then (proj1_sig (sig_of_sig2 y)) is the witness a, (proj2_sig (sig_of_sig2 y)) is the proof of (P a), and (proj3_sig y) is the proof of (Q a).

Section Subset_projections2.

  Variable A : Type.
  Variables P Q : A -> Prop.

  Definition proj3_sig (e : sig2 P Q) :=
    let (a, b, c) return Q (proj1_sig (sig_of_sig2 e)) := e in c.

End Subset_projections2.

Projections of sigT
An element x of a sigma-type {y:A & P y} is a dependent pair made of an a of type A and an h of type P a. Then, (projT1 x) is the first projection and (projT2 x) is the second projection, the type of which depends on the projT1.

Section Projections.

  Variable A : Type.
  Variable P : A -> Type.

  Definition projT1 (x:sigT P) : A := match x with
                                      | existT _ a _ => a
                                      end.

  Definition projT2 (x:sigT P) : P (projT1 x) :=
    match x return P (projT1 x) with
    | existT _ _ h => h
    end.


End Projections.


sigT2 of a predicate can be projected to a sigT.
This allows projT1 and projT2 to be usable with sigT2.
The let statements occur in the body of the existT so that projT1 of a coerced X : sigT2 P Q will unify with let (a, _, _) := X in a

Definition sigT_of_sigT2 (A : Type) (P Q : A -> Type) (X : sigT2 P Q) : sigT P
  := existT P
            (let (a, _, _) := X in a)
            (let (x, p, _) as s return (P (let (a, _, _) := s in a)) := X in p).

Projections of sigT2
An element x of a sigma-type {y:A & P y & Q y} is a dependent pair made of an a of type A, an h of type P a, and an h' of type Q a. Then, (projT1 (sigT_of_sigT2 x)) is the first projection, (projT2 (sigT_of_sigT2 x)) is the second projection, and (projT3 x) is the third projection, the types of which depends on the projT1.

Section Projections2.

  Variable A : Type.
  Variables P Q : A -> Type.

  Definition projT3 (e : sigT2 P Q) :=
    let (a, b, c) return Q (projT1 (sigT_of_sigT2 e)) := e in c.

End Projections2.

sigT of a predicate is equivalent to sig

Definition sig_of_sigT (A : Type) (P : A -> Prop) (X : sigT P) : sig P
  := exist P (projT1 X) (projT2 X).

Definition sigT_of_sig (A : Type) (P : A -> Prop) (X : sig P) : sigT P
  := existT P (proj1_sig X) (proj2_sig X).

sigT2 of a predicate is equivalent to sig2

Definition sig2_of_sigT2 (A : Type) (P Q : A -> Prop) (X : sigT2 P Q) : sig2 P Q
  := exist2 P Q (projT1 (sigT_of_sigT2 X)) (projT2 (sigT_of_sigT2 X)) (projT3 X).

Definition sigT2_of_sig2 (A : Type) (P Q : A -> Prop) (X : sig2 P Q) : sigT2 P Q
  := existT2 P Q (proj1_sig (sig_of_sig2 X)) (proj2_sig (sig_of_sig2 X)) (proj3_sig X).

η Principles
Definition sigT_eta {A P} (p : { a : A & P a })
  : p = existT _ (projT1 p) (projT2 p).

Definition sig_eta {A P} (p : { a : A | P a })
  : p = exist _ (proj1_sig p) (proj2_sig p).

Definition sigT2_eta {A P Q} (p : { a : A & P a & Q a })
  : p = existT2 _ _ (projT1 (sigT_of_sigT2 p)) (projT2 (sigT_of_sigT2 p)) (projT3 p).

Definition sig2_eta {A P Q} (p : { a : A | P a & Q a })
  : p = exist2 _ _ (proj1_sig (sig_of_sig2 p)) (proj2_sig (sig_of_sig2 p)) (proj3_sig p).

exists x : A, B is equivalent to inhabited {x : A | B}
Equality of sigma types

Import EqNotations.

Equality for sigT
Section sigT.
  Local Unset Implicit Arguments.
Projecting an equality of a pair to equality of the first components
  Definition projT1_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v)
    : u.1 = v.1
    := f_equal (fun x => x.1) p.

Projecting an equality of a pair to equality of the second components
  Definition projT2_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v)
    : rew projT1_eq p in u.2 = v.2
    := rew dependent p in eq_refl.

Equality of sigT is itself a sigT (forwards-reasoning version)
  Definition eq_existT_uncurried {A : Type} {P : A -> Type} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
             (pq : { p : u1 = v1 & rew p in u2 = v2 })
    : (u1; u2) = (v1; v2).

Equality of sigT is itself a sigT (backwards-reasoning version)
  Definition eq_sigT_uncurried {A : Type} {P : A -> Type} (u v : { a : A & P a })
             (pq : { p : u.1 = v.1 & rew p in u.2 = v.2 })
    : u = v.

  Lemma eq_existT_curried {A : Type} {P : A -> Type} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
             (p : u1 = v1) (q : rew p in u2 = v2) : (u1; u2) = (v1; v2).


  Lemma eq_existT_curried_map {A A' P P'} (f:A -> A') (g:forall u:A, P u -> P' (f u))
    {u1 v1 : A} {u2 : P u1} {v2 : P v1} (p : u1 = v1) (q : rew p in u2 = v2) :
    f_equal (fun x => (f x.1; g x.1 x.2)) (= p; q) =
    (= f_equal f p; f_equal_dep2 f g p q).

  Lemma eq_existT_curried_trans {A P} {u1 v1 w1 : A} {u2 : P u1} {v2 : P v1} {w2 : P w1}
    (p : u1 = v1) (q : rew p in u2 = v2)
    (p' : v1 = w1) (q': rew p' in v2 = w2) :
    eq_trans (= p; q) (= p'; q') =
      (= eq_trans p p'; eq_trans_map p p' q q').

  Theorem eq_existT_curried_congr {A P} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
    {p p' : u1 = v1} {q : rew p in u2 = v2} {q': rew p' in u2 = v2}
    (r : p = p') : rew [fun H => rew H in u2 = v2] r in q = q' -> (= p; q) = (= p'; q').

Curried version of proving equality of sigma types
  Definition eq_sigT {A : Type} {P : A -> Type} (u v : { a : A & P a })
             (p : u.1 = v.1) (q : rew p in u.2 = v.2)
    : u = v
    := eq_sigT_uncurried u v (existT _ p q).

Equality of sigT when the property is an hProp
  Definition eq_sigT_hprop {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A & P a })
             (p : u.1 = v.1)
    : u = v
    := eq_sigT u v p (P_hprop _ _ _).

Equivalence of equality of sigT with a sigT of equality We could actually prove an isomorphism here, and not just <->, but for simplicity, we don't.
  Definition eq_sigT_uncurried_iff {A P}
             (u v : { a : A & P a })
    : u = v <-> { p : u.1 = v.1 & rew p in u.2 = v.2 }.

Induction principle for @eq (sigT _)
  Definition eq_sigT_rect {A P} {u v : { a : A & P a }} (Q : u = v -> Type)
             (f : forall p q, Q (eq_sigT u v p q))
    : forall p, Q p.
  Definition eq_sigT_rec {A P u v} (Q : u = v :> { a : A & P a } -> Set) := eq_sigT_rect Q.
  Definition eq_sigT_ind {A P u v} (Q : u = v :> { a : A & P a } -> Prop) := eq_sigT_rec Q.

Equivalence of equality of sigT involving hProps with equality of the first components
  Definition eq_sigT_hprop_iff {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A & P a })
    : u = v <-> (u.1 = v.1)
    := conj (fun p => f_equal (@projT1 _ _) p) (eq_sigT_hprop P_hprop u v).

Non-dependent classification of equality of sigT
  Definition eq_sigT_nondep {A B : Type} (u v : { a : A & B })
             (p : u.1 = v.1) (q : u.2 = v.2)
    : u = v
    := @eq_sigT _ _ u v p (eq_trans (rew_const _ _) q).

Classification of transporting across an equality of sigTs
  Lemma rew_sigT {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x & Q x p }) {y} (H : x = y)
    : rew [fun a => { p : P a & Q a p }] H in u
      = existT
          (Q y)
          (rew H in u.1)
          (rew dependent H in (u.2)).
End sigT.

Equality for sig
Section sig.
  Local Unset Implicit Arguments.
Projecting an equality of a pair to equality of the first components
  Definition proj1_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v)
    : proj1_sig u = proj1_sig v
    := f_equal (@proj1_sig _ _) p.

Projecting an equality of a pair to equality of the second components
  Definition proj2_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v)
    : rew proj1_sig_eq p in proj2_sig u = proj2_sig v
    := rew dependent p in eq_refl.

Equality of sig is itself a sig (forwards-reasoning version)
  Definition eq_exist_uncurried {A : Type} {P : A -> Prop} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
             (pq : { p : u1 = v1 | rew p in u2 = v2 })
    : exist _ u1 u2 = exist _ v1 v2.

Equality of sig is itself a sig (backwards-reasoning version)
  Definition eq_sig_uncurried {A : Type} {P : A -> Prop} (u v : { a : A | P a })
             (pq : { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v })
    : u = v.

Curried version of proving equality of sigma types
  Definition eq_sig {A : Type} {P : A -> Prop} (u v : { a : A | P a })
             (p : proj1_sig u = proj1_sig v) (q : rew p in proj2_sig u = proj2_sig v)
    : u = v
    := eq_sig_uncurried u v (exist _ p q).

Induction principle for @eq (sig _)
  Definition eq_sig_rect {A P} {u v : { a : A | P a }} (Q : u = v -> Type)
             (f : forall p q, Q (eq_sig u v p q))
    : forall p, Q p.
  Definition eq_sig_rec {A P u v} (Q : u = v :> { a : A | P a } -> Set) := eq_sig_rect Q.
  Definition eq_sig_ind {A P u v} (Q : u = v :> { a : A | P a } -> Prop) := eq_sig_rec Q.

Equality of sig when the property is an hProp
  Definition eq_sig_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A | P a })
             (p : proj1_sig u = proj1_sig v)
    : u = v
    := eq_sig u v p (P_hprop _ _ _).

Equivalence of equality of sig with a sig of equality We could actually prove an isomorphism here, and not just <->, but for simplicity, we don't.
  Definition eq_sig_uncurried_iff {A} {P : A -> Prop}
             (u v : { a : A | P a })
    : u = v <-> { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v }.

Equivalence of equality of sig involving hProps with equality of the first components
  Definition eq_sig_hprop_iff {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A | P a })
    : u = v <-> (proj1_sig u = proj1_sig v)
    := conj (fun p => f_equal (@proj1_sig _ _) p) (eq_sig_hprop P_hprop u v).

  Lemma rew_sig {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x | Q x p }) {y} (H : x = y)
    : rew [fun a => { p : P a | Q a p }] H in u
      = exist
          (Q y)
          (rew H in proj1_sig u)
          (rew dependent H in proj2_sig u).
End sig.

Equality for sigT
Section sigT2.
  Local Unset Implicit Arguments.
Projecting an equality of a pair to equality of the first components
  Definition sigT_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : u = v :> { a : A & P a }
    := f_equal _ p.
  Definition projT1_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : u.1 = v.1
    := projT1_eq (sigT_of_sigT2_eq p).

Projecting an equality of a pair to equality of the second components
  Definition projT2_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : rew projT1_of_sigT2_eq p in u.2 = v.2
    := rew dependent p in eq_refl.

Projecting an equality of a pair to equality of the third components
  Definition projT3_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : rew projT1_of_sigT2_eq p in projT3 u = projT3 v
    := rew dependent p in eq_refl.

Equality of sigT2 is itself a sigT2 (forwards-reasoning version)
  Definition eq_existT2_uncurried {A : Type} {P Q : A -> Type}
             {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1}
             (pqr : { p : u1 = v1
                    & rew p in u2 = v2 & rew p in u3 = v3 })
    : existT2 _ _ u1 u2 u3 = existT2 _ _ v1 v2 v3.

Equality of sigT2 is itself a sigT2 (backwards-reasoning version)
  Definition eq_sigT2_uncurried {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a })
             (pqr : { p : u.1 = v.1
                    & rew p in u.2 = v.2 & rew p in projT3 u = projT3 v })
    : u = v.

Curried version of proving equality of sigma types
  Definition eq_sigT2 {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a })
             (p : u.1 = v.1)
             (q : rew p in u.2 = v.2)
             (r : rew p in projT3 u = projT3 v)
    : u = v
    := eq_sigT2_uncurried u v (existT2 _ _ p q r).

Equality of sigT2 when the second property is an hProp
  Definition eq_sigT2_hprop {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A & P a & Q a })
             (p : u = v :> { a : A & P a })
    : u = v
    := eq_sigT2 u v (projT1_eq p) (projT2_eq p) (Q_hprop _ _ _).

Equivalence of equality of sigT2 with a sigT2 of equality We could actually prove an isomorphism here, and not just <->, but for simplicity, we don't.
  Definition eq_sigT2_uncurried_iff {A P Q}
             (u v : { a : A & P a & Q a })
    : u = v
      <-> { p : u.1 = v.1
          & rew p in u.2 = v.2 & rew p in projT3 u = projT3 v }.

Induction principle for @eq (sigT2 _ _)
  Definition eq_sigT2_rect {A P Q} {u v : { a : A & P a & Q a }} (R : u = v -> Type)
             (f : forall p q r, R (eq_sigT2 u v p q r))
    : forall p, R p.
  Definition eq_sigT2_rec {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Set) := eq_sigT2_rect R.
  Definition eq_sigT2_ind {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Prop) := eq_sigT2_rec R.

Equivalence of equality of sigT2 involving hProps with equality of the first components
  Definition eq_sigT2_hprop_iff {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A & P a & Q a })
    : u = v <-> (u = v :> { a : A & P a })
    := conj (fun p => f_equal (@sigT_of_sigT2 _ _ _) p) (eq_sigT2_hprop Q_hprop u v).

Non-dependent classification of equality of sigT
  Definition eq_sigT2_nondep {A B C : Type} (u v : { a : A & B & C })
             (p : u.1 = v.1) (q : u.2 = v.2) (r : projT3 u = projT3 v)
    : u = v
    := @eq_sigT2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r).

Classification of transporting across an equality of sigT2s
  Lemma rew_sigT2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop)
        (u : { p : P x & Q x p & R x p })
        {y} (H : x = y)
    : rew [fun a => { p : P a & Q a p & R a p }] H in u
      = existT2
          (Q y)
          (R y)
          (rew H in u.1)
          (rew dependent H in u.2)
          (rew dependent H in projT3 u).
End sigT2.

Equality for sig2
Section sig2.
  Local Unset Implicit Arguments.
Projecting an equality of a pair to equality of the first components
  Definition sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : u = v :> { a : A | P a }
    := f_equal _ p.
  Definition proj1_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : proj1_sig u = proj1_sig v
    := proj1_sig_eq (sig_of_sig2_eq p).

Projecting an equality of a pair to equality of the second components
  Definition proj2_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : rew proj1_sig_of_sig2_eq p in proj2_sig u = proj2_sig v
    := rew dependent p in eq_refl.

Projecting an equality of a pair to equality of the third components
  Definition proj3_sig_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : rew proj1_sig_of_sig2_eq p in proj3_sig u = proj3_sig v
    := rew dependent p in eq_refl.

Equality of sig2 is itself a sig2 (fowards-reasoning version)
  Definition eq_exist2_uncurried {A} {P Q : A -> Prop}
             {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1}
             (pqr : { p : u1 = v1
                    | rew p in u2 = v2 & rew p in u3 = v3 })
    : exist2 _ _ u1 u2 u3 = exist2 _ _ v1 v2 v3.

Equality of sig2 is itself a sig2 (backwards-reasoning version)
  Definition eq_sig2_uncurried {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a })
             (pqr : { p : proj1_sig u = proj1_sig v
                    | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v })
    : u = v.

Curried version of proving equality of sigma types
  Definition eq_sig2 {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a })
             (p : proj1_sig u = proj1_sig v)
             (q : rew p in proj2_sig u = proj2_sig v)
             (r : rew p in proj3_sig u = proj3_sig v)
    : u = v
    := eq_sig2_uncurried u v (exist2 _ _ p q r).

Equality of sig2 when the second property is an hProp
  Definition eq_sig2_hprop {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A | P a & Q a })
             (p : u = v :> { a : A | P a })
    : u = v
    := eq_sig2 u v (proj1_sig_eq p) (proj2_sig_eq p) (Q_hprop _ _ _).

Equivalence of equality of sig2 with a sig2 of equality We could actually prove an isomorphism here, and not just <->, but for simplicity, we don't.
  Definition eq_sig2_uncurried_iff {A P Q}
             (u v : { a : A | P a & Q a })
    : u = v
      <-> { p : proj1_sig u = proj1_sig v
          | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v }.

Induction principle for @eq (sig2 _ _)
  Definition eq_sig2_rect {A P Q} {u v : { a : A | P a & Q a }} (R : u = v -> Type)
             (f : forall p q r, R (eq_sig2 u v p q r))
    : forall p, R p.
  Definition eq_sig2_rec {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Set) := eq_sig2_rect R.
  Definition eq_sig2_ind {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Prop) := eq_sig2_rec R.

Equivalence of equality of sig2 involving hProps with equality of the first components
  Definition eq_sig2_hprop_iff {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A | P a & Q a })
    : u = v <-> (u = v :> { a : A | P a })
    := conj (fun p => f_equal (@sig_of_sig2 _ _ _) p) (eq_sig2_hprop Q_hprop u v).

Non-dependent classification of equality of sig
  Definition eq_sig2_nondep {A} {B C : Prop} (u v : @sig2 A (fun _ => B) (fun _ => C))
             (p : proj1_sig u = proj1_sig v) (q : proj2_sig u = proj2_sig v) (r : proj3_sig u = proj3_sig v)
    : u = v
    := @eq_sig2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r).

Classification of transporting across an equality of sig2s
  Lemma rew_sig2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop)
        (u : { p : P x | Q x p & R x p })
        {y} (H : x = y)
    : rew [fun a => { p : P a | Q a p & R a p }] H in u
      = exist2
          (Q y)
          (R y)
          (rew H in proj1_sig u)
          (rew dependent H in proj2_sig u)
          (rew dependent H in proj3_sig u).
End sig2.

sumbool is a boolean type equipped with the justification of their value

Inductive sumbool (A B:Prop) : Set :=
  | left : A -> {A} + {B}
  | right : B -> {A} + {B}
 where "{ A } + { B }" := (sumbool A B) : type_scope.

Add Printing If sumbool.



sumor is an option type equipped with the justification of why it may not be a regular value

#[universes(template)]
Inductive sumor (A:Type) (B:Prop) : Type :=
  | inleft : A -> A + {B}
  | inright : B -> A + {B}
 where "A + { B }" := (sumor A B) : type_scope.

Add Printing If sumor.



Various forms of the axiom of choice for specifications

Section Choice_lemmas.

  Variables S S' : Set.
  Variable R : S -> S' -> Prop.
  Variable R' : S -> S' -> Set.
  Variables R1 R2 : S -> Prop.

  Lemma Choice :
   (forall x:S, {y:S' | R x y}) -> {f:S -> S' | forall z:S, R z (f z)}.

  Lemma Choice2 :
   (forall x:S, {y:S' & R' x y}) -> {f:S -> S' & forall z:S, R' z (f z)}.

  Lemma bool_choice :
   (forall x:S, {R1 x} + {R2 x}) ->
     {f:S -> bool | forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.

End Choice_lemmas.

Section Dependent_choice_lemmas.

  Variable X : Set.
  Variable R : X -> X -> Prop.

  Lemma dependent_choice :
    (forall x:X, {y | R x y}) ->
    forall x0, {f : nat -> X | f O = x0 /\ forall n, R (f n) (f (S n))}.

End Dependent_choice_lemmas.

A result of type (Exc A) is either a normal value of type A or an error :
Inductive Exc [A:Type] : Type := value : A->(Exc A) | error : (Exc A).
It is implemented using the option type.
Section Exc.
  Variable A : Type.

  Definition Exc := option A.
  Definition value := @Some A.
  Definition error := @None A.
End Exc.

Definition except := False_rec.

Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.

#[global]
Hint Resolve left right inleft inright: core.
#[global]
Hint Resolve exist exist2 existT existT2: core.