Library Coq.micromega.ZifyInt63
Require Import ZArith.
Require Import Int63.
Require Import ZifyBool.
Import ZifyClasses.
Lemma to_Z_bounded : forall x, (0 <= to_Z x < 9223372036854775808)%Z.
Instance Inj_int_Z : InjTyp int Z :=
mkinj _ _ to_Z (fun x => 0 <= x < 9223372036854775808)%Z to_Z_bounded.
Add Zify InjTyp Inj_int_Z.
Instance Op_max_int : CstOp max_int :=
{ TCst := 9223372036854775807 ; TCstInj := eq_refl }.
Add Zify CstOp Op_max_int.
Instance Op_digits : CstOp digits :=
{ TCst := 63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_digits.
Instance Op_size : CstOp size :=
{ TCst := 63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_size.
Instance Op_wB : CstOp wB :=
{ TCst := 2^63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_wB.
Lemma ltb_lt : forall n m,
(n <? m)%int63 = (φ (n)%int63 <? φ (m)%int63)%Z.
Instance Op_ltb : BinOp ltb :=
{| TBOp := Z.ltb; TBOpInj := ltb_lt |}.
Add Zify BinOp Op_ltb.
Lemma leb_le : forall n m,
(n <=? m)%int63 = (φ (n)%int63 <=? φ (m)%int63)%Z.
Instance Op_leb : BinOp leb :=
{| TBOp := Z.leb; TBOpInj := leb_le |}.
Add Zify BinOp Op_leb.
Lemma eqb_eq : forall n m,
(n =? m)%int63 = (φ (n)%int63 =? φ (m)%int63)%Z.
Instance Op_eqb : BinOp eqb :=
{| TBOp := Z.eqb; TBOpInj := eqb_eq |}.
Add Zify BinOp Op_eqb.
Lemma eq_int_inj : forall n m : int, n = m <-> (φ n = φ m)%int63.
Instance Op_eq : BinRel (@eq int) :=
{| TR := @eq Z; TRInj := eq_int_inj |}.
Add Zify BinRel Op_eq.
Instance Op_add : BinOp add :=
{| TBOp := fun x y => (x + y) mod 9223372036854775808%Z; TBOpInj := add_spec |}%Z.
Add Zify BinOp Op_add.
Instance Op_sub : BinOp sub :=
{| TBOp := fun x y => (x - y) mod 9223372036854775808%Z; TBOpInj := sub_spec |}%Z.
Add Zify BinOp Op_sub.
Instance Op_opp : UnOp Int63.opp :=
{| TUOp := (fun x => (- x) mod 9223372036854775808)%Z; TUOpInj := (sub_spec 0) |}%Z.
Add Zify UnOp Op_opp.
Instance Op_oppcarry : UnOp oppcarry :=
{| TUOp := (fun x => 2^63 - x - 1)%Z; TUOpInj := oppcarry_spec |}%Z.
Add Zify UnOp Op_oppcarry.
Instance Op_succ : UnOp succ :=
{| TUOp := (fun x => (x + 1) mod 2^63)%Z; TUOpInj := succ_spec |}%Z.
Add Zify UnOp Op_succ.
Instance Op_pred : UnOp Int63.pred :=
{| TUOp := (fun x => (x - 1) mod 2^63)%Z; TUOpInj := pred_spec |}%Z.
Add Zify UnOp Op_pred.
Instance Op_mul : BinOp mul :=
{| TBOp := fun x y => (x * y) mod 9223372036854775808%Z; TBOpInj := mul_spec |}%Z.
Add Zify BinOp Op_mul.
Instance Op_gcd : BinOp gcd:=
{| TBOp := (fun x y => Zgcd_alt.Zgcdn (2 * 63)%nat y x) ; TBOpInj := to_Z_gcd |}.
Add Zify BinOp Op_gcd.
Instance Op_mod : BinOp Int63.mod :=
{| TBOp := Z.modulo ; TBOpInj := mod_spec |}.
Add Zify BinOp Op_mod.
Instance Op_subcarry : BinOp subcarry :=
{| TBOp := (fun x y => (x - y - 1) mod 2^63)%Z ; TBOpInj := subcarry_spec |}.
Add Zify BinOp Op_subcarry.
Instance Op_addcarry : BinOp addcarry :=
{| TBOp := (fun x y => (x + y + 1) mod 2^63)%Z ; TBOpInj := addcarry_spec |}.
Add Zify BinOp Op_addcarry.
Instance Op_lsr : BinOp lsr :=
{| TBOp := (fun x y => x / 2^ y)%Z ; TBOpInj := lsr_spec |}.
Add Zify BinOp Op_lsr.
Instance Op_lsl : BinOp lsl :=
{| TBOp := (fun x y => (x * 2^ y) mod 2^ 63)%Z ; TBOpInj := lsl_spec |}.
Add Zify BinOp Op_lsl.
Instance Op_lor : BinOp Int63.lor :=
{| TBOp := Z.lor ; TBOpInj := lor_spec' |}.
Add Zify BinOp Op_lor.
Instance Op_land : BinOp Int63.land :=
{| TBOp := Z.land ; TBOpInj := land_spec' |}.
Add Zify BinOp Op_land.
Instance Op_lxor : BinOp Int63.lxor :=
{| TBOp := Z.lxor ; TBOpInj := lxor_spec' |}.
Add Zify BinOp Op_lxor.
Instance Op_div : BinOp div :=
{| TBOp := Z.div ; TBOpInj := div_spec |}.
Add Zify BinOp Op_div.
Instance Op_bit : BinOp bit :=
{| TBOp := Z.testbit ; TBOpInj := bitE |}.
Add Zify BinOp Op_bit.
Instance Op_of_Z : UnOp of_Z :=
{ TUOp := (fun x => x mod 9223372036854775808)%Z; TUOpInj := of_Z_spec }.
Add Zify UnOp Op_of_Z.
Instance Op_to_Z : UnOp to_Z :=
{ TUOp := fun x => x ; TUOpInj := fun x : int => eq_refl }.
Add Zify UnOp Op_to_Z.
Instance Op_is_zero : UnOp is_zero :=
{ TUOp := (Z.eqb 0) ; TUOpInj := is_zeroE }.
Add Zify UnOp Op_is_zero.
Lemma is_evenE : forall x,
is_even x = Z.even φ (x)%int63.
Instance Op_is_even : UnOp is_even :=
{ TUOp := Z.even ; TUOpInj := is_evenE }.
Add Zify UnOp Op_is_even.
Ltac Zify.zify_convert_to_euclidean_division_equations_flag ::= constr:(true).
Require Import Int63.
Require Import ZifyBool.
Import ZifyClasses.
Lemma to_Z_bounded : forall x, (0 <= to_Z x < 9223372036854775808)%Z.
Instance Inj_int_Z : InjTyp int Z :=
mkinj _ _ to_Z (fun x => 0 <= x < 9223372036854775808)%Z to_Z_bounded.
Add Zify InjTyp Inj_int_Z.
Instance Op_max_int : CstOp max_int :=
{ TCst := 9223372036854775807 ; TCstInj := eq_refl }.
Add Zify CstOp Op_max_int.
Instance Op_digits : CstOp digits :=
{ TCst := 63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_digits.
Instance Op_size : CstOp size :=
{ TCst := 63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_size.
Instance Op_wB : CstOp wB :=
{ TCst := 2^63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_wB.
Lemma ltb_lt : forall n m,
(n <? m)%int63 = (φ (n)%int63 <? φ (m)%int63)%Z.
Instance Op_ltb : BinOp ltb :=
{| TBOp := Z.ltb; TBOpInj := ltb_lt |}.
Add Zify BinOp Op_ltb.
Lemma leb_le : forall n m,
(n <=? m)%int63 = (φ (n)%int63 <=? φ (m)%int63)%Z.
Instance Op_leb : BinOp leb :=
{| TBOp := Z.leb; TBOpInj := leb_le |}.
Add Zify BinOp Op_leb.
Lemma eqb_eq : forall n m,
(n =? m)%int63 = (φ (n)%int63 =? φ (m)%int63)%Z.
Instance Op_eqb : BinOp eqb :=
{| TBOp := Z.eqb; TBOpInj := eqb_eq |}.
Add Zify BinOp Op_eqb.
Lemma eq_int_inj : forall n m : int, n = m <-> (φ n = φ m)%int63.
Instance Op_eq : BinRel (@eq int) :=
{| TR := @eq Z; TRInj := eq_int_inj |}.
Add Zify BinRel Op_eq.
Instance Op_add : BinOp add :=
{| TBOp := fun x y => (x + y) mod 9223372036854775808%Z; TBOpInj := add_spec |}%Z.
Add Zify BinOp Op_add.
Instance Op_sub : BinOp sub :=
{| TBOp := fun x y => (x - y) mod 9223372036854775808%Z; TBOpInj := sub_spec |}%Z.
Add Zify BinOp Op_sub.
Instance Op_opp : UnOp Int63.opp :=
{| TUOp := (fun x => (- x) mod 9223372036854775808)%Z; TUOpInj := (sub_spec 0) |}%Z.
Add Zify UnOp Op_opp.
Instance Op_oppcarry : UnOp oppcarry :=
{| TUOp := (fun x => 2^63 - x - 1)%Z; TUOpInj := oppcarry_spec |}%Z.
Add Zify UnOp Op_oppcarry.
Instance Op_succ : UnOp succ :=
{| TUOp := (fun x => (x + 1) mod 2^63)%Z; TUOpInj := succ_spec |}%Z.
Add Zify UnOp Op_succ.
Instance Op_pred : UnOp Int63.pred :=
{| TUOp := (fun x => (x - 1) mod 2^63)%Z; TUOpInj := pred_spec |}%Z.
Add Zify UnOp Op_pred.
Instance Op_mul : BinOp mul :=
{| TBOp := fun x y => (x * y) mod 9223372036854775808%Z; TBOpInj := mul_spec |}%Z.
Add Zify BinOp Op_mul.
Instance Op_gcd : BinOp gcd:=
{| TBOp := (fun x y => Zgcd_alt.Zgcdn (2 * 63)%nat y x) ; TBOpInj := to_Z_gcd |}.
Add Zify BinOp Op_gcd.
Instance Op_mod : BinOp Int63.mod :=
{| TBOp := Z.modulo ; TBOpInj := mod_spec |}.
Add Zify BinOp Op_mod.
Instance Op_subcarry : BinOp subcarry :=
{| TBOp := (fun x y => (x - y - 1) mod 2^63)%Z ; TBOpInj := subcarry_spec |}.
Add Zify BinOp Op_subcarry.
Instance Op_addcarry : BinOp addcarry :=
{| TBOp := (fun x y => (x + y + 1) mod 2^63)%Z ; TBOpInj := addcarry_spec |}.
Add Zify BinOp Op_addcarry.
Instance Op_lsr : BinOp lsr :=
{| TBOp := (fun x y => x / 2^ y)%Z ; TBOpInj := lsr_spec |}.
Add Zify BinOp Op_lsr.
Instance Op_lsl : BinOp lsl :=
{| TBOp := (fun x y => (x * 2^ y) mod 2^ 63)%Z ; TBOpInj := lsl_spec |}.
Add Zify BinOp Op_lsl.
Instance Op_lor : BinOp Int63.lor :=
{| TBOp := Z.lor ; TBOpInj := lor_spec' |}.
Add Zify BinOp Op_lor.
Instance Op_land : BinOp Int63.land :=
{| TBOp := Z.land ; TBOpInj := land_spec' |}.
Add Zify BinOp Op_land.
Instance Op_lxor : BinOp Int63.lxor :=
{| TBOp := Z.lxor ; TBOpInj := lxor_spec' |}.
Add Zify BinOp Op_lxor.
Instance Op_div : BinOp div :=
{| TBOp := Z.div ; TBOpInj := div_spec |}.
Add Zify BinOp Op_div.
Instance Op_bit : BinOp bit :=
{| TBOp := Z.testbit ; TBOpInj := bitE |}.
Add Zify BinOp Op_bit.
Instance Op_of_Z : UnOp of_Z :=
{ TUOp := (fun x => x mod 9223372036854775808)%Z; TUOpInj := of_Z_spec }.
Add Zify UnOp Op_of_Z.
Instance Op_to_Z : UnOp to_Z :=
{ TUOp := fun x => x ; TUOpInj := fun x : int => eq_refl }.
Add Zify UnOp Op_to_Z.
Instance Op_is_zero : UnOp is_zero :=
{ TUOp := (Z.eqb 0) ; TUOpInj := is_zeroE }.
Add Zify UnOp Op_is_zero.
Lemma is_evenE : forall x,
is_even x = Z.even φ (x)%int63.
Instance Op_is_even : UnOp is_even :=
{ TUOp := Z.even ; TUOpInj := is_evenE }.
Add Zify UnOp Op_is_even.
Ltac Zify.zify_convert_to_euclidean_division_equations_flag ::= constr:(true).