Library Coq.Reals.ROrderedType
Lemma Req_dec : forall r1 r2:R, {r1 = r2} + {r1 <> r2}.
Definition Reqb r1 r2 := if Req_dec r1 r2 then true else false.
Lemma Reqb_eq : forall r1 r2, Reqb r1 r2 = true <-> r1=r2.
Module R_as_UBE <: UsualBoolEq.
Definition t := R.
Definition eq := @eq R.
Definition eqb := Reqb.
Definition eqb_eq := Reqb_eq.
End R_as_UBE.
Module R_as_DT <: UsualDecidableTypeFull := Make_UDTF R_as_UBE.
Note that the last module fulfills by subtyping many other
interfaces, such as DecidableType or EqualityType.
Note that R_as_DT can also be seen as a DecidableType
and a DecidableTypeOrig.
OrderedType structure for binary integers
Definition Rcompare x y :=
match total_order_T x y with
| inleft (left _) => Lt
| inleft (right _) => Eq
| inright _ => Gt
end.
Lemma Rcompare_spec : forall x y, CompareSpec (x=y) (x<y) (y<x) (Rcompare x y).
Module R_as_OT <: OrderedTypeFull.
Include R_as_DT.
Definition lt := Rlt.
Definition le := Rle.
Definition compare := Rcompare.
#[global]
Instance lt_strorder : StrictOrder Rlt.
#[global]
Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) Rlt.
Lemma le_lteq : forall x y, x <= y <-> x < y \/ x = y.
Definition compare_spec := Rcompare_spec.
End R_as_OT.
Note that R_as_OT can also be seen as a UsualOrderedType
and a OrderedType (and also as a DecidableType).
An order tactic for real numbers
Note that r_order is domain-agnostic: it will not prove
1<=2 or x<=x+x, but rather things like x<=y -> y<=x -> x=y.