Library Coq.Init.Datatypes
unit is a singleton datatype with sole inhabitant tt
Inductive bool : Set :=
| true : bool
| false : bool.
Add Printing If bool.
Declare Scope bool_scope.
Delimit Scope bool_scope with bool.
Bind Scope bool_scope with bool.
Register bool as core.bool.type.
Register true as core.bool.true.
Register false as core.bool.false.
Basic boolean operators
Definition andb (b1 b2:bool) : bool := if b1 then b2 else false.
Definition orb (b1 b2:bool) : bool := if b1 then true else b2.
Definition implb (b1 b2:bool) : bool := if b1 then b2 else true.
Definition xorb (b1 b2:bool) : bool :=
match b1, b2 with
| true, true => false
| true, false => true
| false, true => true
| false, false => false
end.
Definition negb (b:bool) := if b then false else true.
Infix "||" := orb : bool_scope.
Infix "&&" := andb : bool_scope.
Register andb as core.bool.andb.
Register orb as core.bool.orb.
Register implb as core.bool.implb.
Register xorb as core.bool.xorb.
Register negb as core.bool.negb.
Basic properties of andb
Lemma andb_prop (a b:bool) : andb a b = true -> a = true /\ b = true.
#[global]
Hint Resolve andb_prop: bool.
Register andb_prop as core.bool.andb_prop.
Lemma andb_true_intro (b1 b2:bool) :
b1 = true /\ b2 = true -> andb b1 b2 = true.
#[global]
Hint Resolve andb_true_intro: bool.
Register andb_true_intro as core.bool.andb_true_intro.
Interpretation of booleans as propositions
Inductive eq_true : bool -> Prop := is_eq_true : eq_true true.
#[global]
Hint Constructors eq_true : eq_true.
Register eq_true as core.eq_true.type.
Another way of interpreting booleans as propositions
is_true can be activated as a coercion by
(Local) Coercion is_true : bool >-> Sortclass.
Additional rewriting lemmas about eq_true
Lemma eq_true_ind_r :
forall (P : bool -> Prop) (b : bool), P b -> eq_true b -> P true.
Lemma eq_true_rec_r :
forall (P : bool -> Set) (b : bool), P b -> eq_true b -> P true.
Lemma eq_true_rect_r :
forall (P : bool -> Type) (b : bool), P b -> eq_true b -> P true.
The BoolSpec inductive will be used to relate a boolean value
and two propositions corresponding respectively to the true
case and the false case.
Interest: BoolSpec behave nicely with case and destruct.
See also Bool.reflect when Q = ~P.
Inductive BoolSpec (P Q : Prop) : bool -> Prop :=
| BoolSpecT : P -> BoolSpec P Q true
| BoolSpecF : Q -> BoolSpec P Q false.
#[global]
Hint Constructors BoolSpec : core.
Register BoolSpec as core.BoolSpec.type.
Register BoolSpecT as core.BoolSpec.BoolSpecT.
Register BoolSpecF as core.BoolSpec.BoolSpecF.
Peano natural numbers
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
Declare Scope hex_nat_scope.
Delimit Scope hex_nat_scope with xnat.
Declare Scope nat_scope.
Delimit Scope nat_scope with nat.
Bind Scope nat_scope with nat.
Arguments S _%nat.
Register nat as num.nat.type.
Register O as num.nat.O.
Register S as num.nat.S.
option A is the extension of A with an extra element None
#[universes(template)]
Inductive option (A:Type) : Type :=
| Some : A -> option A
| None : option A.
Arguments Some {A} a.
Arguments None {A}.
Register option as core.option.type.
Register Some as core.option.Some.
Register None as core.option.None.
Definition option_map (A B:Type) (f:A->B) (o : option A) : option B :=
match o with
| Some a => @Some B (f a)
| None => @None B
end.
sum A B, written A + B, is the disjoint sum of A and B
#[universes(template)]
Inductive sum (A B:Type) : Type :=
| inl : A -> sum A B
| inr : B -> sum A B.
Notation "x + y" := (sum x y) : type_scope.
Arguments inl {A B} _ , [A] B _.
Arguments inr {A B} _ , A [B] _.
Register sum as core.sum.type.
Register inl as core.sum.inl.
Register inr as core.sum.inr.
prod A B, written A * B, is the product of A and B;
the pair pair A B a b of a and b is abbreviated (a,b)
#[universes(template)]
Inductive prod (A B:Type) : Type :=
pair : A -> B -> A * B
where "x * y" := (prod x y) : type_scope.
Add Printing Let prod.
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.
Arguments pair {A B} _ _.
Register prod as core.prod.type.
Register pair as core.prod.intro.
Register prod_rect as core.prod.rect.
Section projections.
Context {A : Type} {B : Type}.
Definition fst (p:A * B) := match p with (x, y) => x end.
Definition snd (p:A * B) := match p with (x, y) => y end.
Register fst as core.prod.proj1.
Register snd as core.prod.proj2.
End projections.
#[global]
Hint Resolve pair inl inr: core.
Lemma surjective_pairing (A B:Type) (p:A * B) : p = (fst p, snd p).
Lemma injective_projections (A B:Type) (p1 p2:A * B) :
fst p1 = fst p2 -> snd p1 = snd p2 -> p1 = p2.
Lemma pair_equal_spec (A B : Type) (a1 a2 : A) (b1 b2 : B) :
(a1, b1) = (a2, b2) <-> a1 = a2 /\ b1 = b2.
Definition curry {A B C:Type} (f:A * B -> C)
(x:A) (y:B) : C := f (x,y).
Definition uncurry {A B C:Type} (f:A -> B -> C)
(p:A * B) : C := match p with (x, y) => f x y end.
#[deprecated(since = "8.13", note = "Use curry instead.")]
Definition prod_uncurry_subdef (A B C:Type) : (A * B -> C) -> A -> B -> C := curry.
#[deprecated(since = "8.13", note = "Use curry instead.")]
Notation prod_uncurry := prod_uncurry_subdef.
#[deprecated(since = "8.13", note = "Use uncurry instead.")]
Definition prod_curry_subdef (A B C:Type) : (A -> B -> C) -> A * B -> C := uncurry.
#[deprecated(since = "8.13", note = "Use uncurry instead.")]
Notation prod_curry := prod_curry_subdef.
Import EqNotations.
Lemma rew_pair A (P Q : A->Type) x1 x2 (y1:P x1) (y2:Q x1) (H:x1=x2) :
(rew H in y1, rew H in y2) = rew [fun x => (P x * Q x)%type] H in (y1,y2).
Polymorphic lists and some operations
#[universes(template)]
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.
Arguments nil {A}.
Arguments cons {A} a l.
Declare Scope list_scope.
Delimit Scope list_scope with list.
Bind Scope list_scope with list.
Infix "::" := cons (at level 60, right associativity) : list_scope.
Register list as core.list.type.
Register nil as core.list.nil.
Register cons as core.list.cons.
Local Open Scope list_scope.
Definition length (A : Type) : list A -> nat :=
fix length l :=
match l with
| nil => O
| _ :: l' => S (length l')
end.
Concatenation of two lists
Definition app (A : Type) : list A -> list A -> list A :=
fix app l m :=
match l with
| nil => m
| a :: l1 => a :: app l1 m
end.
Infix "++" := app (right associativity, at level 60) : list_scope.
Inductive comparison : Set :=
| Eq : comparison
| Lt : comparison
| Gt : comparison.
Register comparison as core.comparison.type.
Register Eq as core.comparison.Eq.
Register Lt as core.comparison.Lt.
Register Gt as core.comparison.Gt.
Lemma comparison_eq_stable (c c' : comparison) : ~~ c = c' -> c = c'.
Definition CompOpp (r:comparison) :=
match r with
| Eq => Eq
| Lt => Gt
| Gt => Lt
end.
Lemma CompOpp_involutive c : CompOpp (CompOpp c) = c.
Lemma CompOpp_inj c c' : CompOpp c = CompOpp c' -> c = c'.
Lemma CompOpp_iff : forall c c', CompOpp c = c' <-> c = CompOpp c'.
The CompareSpec inductive relates a comparison value with three
propositions, one for each possible case. Typically, it can be used to
specify a comparison function via some equality and order predicates.
Interest: CompareSpec behave nicely with case and destruct.
Inductive CompareSpec (Peq Plt Pgt : Prop) : comparison -> Prop :=
| CompEq : Peq -> CompareSpec Peq Plt Pgt Eq
| CompLt : Plt -> CompareSpec Peq Plt Pgt Lt
| CompGt : Pgt -> CompareSpec Peq Plt Pgt Gt.
#[global]
Hint Constructors CompareSpec : core.
Register CompareSpec as core.CompareSpec.type.
Register CompEq as core.CompareSpec.CompEq.
Register CompLt as core.CompareSpec.CompLt.
Register CompGt as core.CompareSpec.CompGt.
For having clean interfaces after extraction, CompareSpec is declared
in Prop. For some situations, it is nonetheless useful to have a
version in Type. Interestingly, these two versions are equivalent.
Inductive CompareSpecT (Peq Plt Pgt : Prop) : comparison -> Type :=
| CompEqT : Peq -> CompareSpecT Peq Plt Pgt Eq
| CompLtT : Plt -> CompareSpecT Peq Plt Pgt Lt
| CompGtT : Pgt -> CompareSpecT Peq Plt Pgt Gt.
#[global]
Hint Constructors CompareSpecT : core.
Register CompareSpecT as core.CompareSpecT.type.
Register CompEqT as core.CompareSpecT.CompEqT.
Register CompLtT as core.CompareSpecT.CompLtT.
Register CompGtT as core.CompareSpecT.CompGtT.
Lemma CompareSpec2Type Peq Plt Pgt c :
CompareSpec Peq Plt Pgt c -> CompareSpecT Peq Plt Pgt c.
As an alternate formulation, one may also directly refer to predicates
eq and lt for specifying a comparison, rather that fully-applied
propositions. This CompSpec is now a particular case of CompareSpec.
Definition CompSpec {A} (eq lt : A->A->Prop)(x y:A) : comparison -> Prop :=
CompareSpec (eq x y) (lt x y) (lt y x).
Definition CompSpecT {A} (eq lt : A->A->Prop)(x y:A) : comparison -> Type :=
CompareSpecT (eq x y) (lt x y) (lt y x).
#[global]
Hint Unfold CompSpec CompSpecT : core.
Lemma CompSpec2Type : forall A (eq lt:A->A->Prop) x y c,
CompSpec eq lt x y c -> CompSpecT eq lt x y c.
Misc Other Datatypes
Inductive identity (A:Type) (a:A) : A -> Type :=
identity_refl : identity a a.
#[global]
Hint Resolve identity_refl: core.
Arguments identity_ind [A] a P f y i.
Arguments identity_rec [A] a P f y i.
Arguments identity_rect [A] a P f y i.
Register identity as core.identity.type.
Register identity_refl as core.identity.refl.
Register identity_ind as core.identity.ind.
Identity type