Library Coq.Numbers.Natural.Abstract.NMaxMin
Zero
Lemma max_0_l : forall n, max 0 n == n.
Lemma max_0_r : forall n, max n 0 == n.
Lemma min_0_l : forall n, min 0 n == 0.
Lemma min_0_r : forall n, min n 0 == 0.
The following results are concrete instances of max_monotone
and similar lemmas.
Succ
Lemma succ_max_distr n m : S (max n m) == max (S n) (S m).
Lemma succ_min_distr n m : S (min n m) == min (S n) (S m).
Add
Lemma add_max_distr_l n m p : max (p + n) (p + m) == p + max n m.
Lemma add_max_distr_r n m p : max (n + p) (m + p) == max n m + p.
Lemma add_min_distr_l n m p : min (p + n) (p + m) == p + min n m.
Lemma add_min_distr_r n m p : min (n + p) (m + p) == min n m + p.
Mul
Lemma mul_max_distr_l n m p : max (p * n) (p * m) == p * max n m.
Lemma mul_max_distr_r n m p : max (n * p) (m * p) == max n m * p.
Lemma mul_min_distr_l n m p : min (p * n) (p * m) == p * min n m.
Lemma mul_min_distr_r n m p : min (n * p) (m * p) == min n m * p.
Sub