Library Coq.Reals.ClassicalConstructiveReals
Proof that classical reals are constructive reals with
extra properties, namely total order, existence of all
least upper bounds and setoid equivalence simplifying to
Leibniz equality.
From this point of view, the quotient Rabst and Rrepr
between classical Dedekind reals and constructive Cauchy reals
becomes an isomorphism for the ConstructiveReals structure.
This allows to apply results from constructive reals to
classical reals.
Require Import QArith_base.
Require Import Rdefinitions.
Require Import Raxioms.
Require Import ConstructiveReals.
Require Import ConstructiveCauchyReals.
Require Import ConstructiveCauchyRealsMult.
Require Import ConstructiveRcomplete.
Require Import ConstructiveCauchyAbs.
Require Import ConstructiveRealsMorphisms.
Local Open Scope R_scope.
Lemma RisLinearOrder : isLinearOrder Rlt.
Lemma RdisjunctEpsilon
: forall a b c d : R, (a < b)%R \/ (c < d)%R -> (a < b)%R + (c < d)%R.
Definition Req_constr (x y : R) : Prop
:= (x < y -> False) /\ (y < x -> False).
Lemma Req_constr_refl : forall x:R, Req_constr x x.
Lemma Req_constr_leibniz : forall x y:R, Req_constr x y -> x = y.
Definition IQR (q : Q) := Rabst (inject_Q q).
Lemma IQR_zero_quot : Req_constr (IQR 0) R0.
Lemma Rring : ring_theory (IQR 0) (IQR 1) Rplus Rmult
(fun x y : R => (x + - y)%R) Ropp Req_constr.
Lemma RringExt : ring_eq_ext Rplus Rmult Ropp Req_constr.
Lemma Rleft_inverse :
forall r : R, (sum (r < IQR 0) (IQR 0 < r)) -> Req_constr (/ r * r) (IQR 1).
Lemma Rinv_pos : forall r : R, (sum (r < IQR 0) (IQR 0 < r)) -> IQR 0 < r -> IQR 0 < / r.
Lemma Rmult_pos : forall x y : R, IQR 0 < x -> IQR 0 < y -> IQR 0 < x * y.
Lemma Rplus_reg_l : forall r r1 r2, r + r1 < r + r2 -> r1 < r2.
Lemma Rzero_lt_one : IQR 0 < IQR 1.
Lemma plus_IQR : forall q r : Q,
IQR (q + r) = IQR q + IQR r.
Lemma mult_IQR : forall q r : Q,
IQR (q * r) = IQR q * IQR r.
Lemma IQR_lt : forall n m:Q, (n < m)%Q -> IQR n < IQR m.
Lemma lt_IQR : forall n m:Q, IQR n < IQR m -> (n < m)%Q.
Lemma IQR_plus_quot : forall q r : Q, Req_constr (IQR (q + r)) (IQR q + IQR r).
Lemma IQR_mult_quot : forall q r : Q, Req_constr (IQR (q * r)) (IQR q * IQR r).
Lemma Rabove_pos : forall x : R, {n : positive & x < IQR (Z.pos n # 1)}.
Lemma Rarchimedean : forall x y : R, x < y -> {q : Q & ((x < IQR q) * (IQR q < y))%type}.
Lemma RabsLUB : forall x y : R, (y < x -> False) /\ (y < - x -> False) <-> (y < Rabst (CReal_abs (Rrepr x)) -> False).
Lemma Rcomplete : forall xn : nat -> R,
(forall p : positive,
{n : nat |
forall i j : nat,
(n <= i)%nat -> (n <= j)%nat -> IQR (1 # p) < Rabst (CReal_abs (Rrepr (xn i + - xn j))) -> False}) ->
{l : R &
forall p : positive,
{n : nat |
forall i : nat, (n <= i)%nat -> IQR (1 # p) < Rabst (CReal_abs (Rrepr (xn i + - l))) -> False}}.
Definition Rabs_quot (x : R) := Rabst (CReal_abs (Rrepr x)).
Definition Rinv_quot (x : R) (xnz : sum (x < IQR 0) (IQR 0 < x)) := Rinv x.
Definition Rlt_epsilon (x y : R) (H : x < y) := H.
Definition DRealConstructive : ConstructiveReals
:= Build_ConstructiveReals
R Rlt RisLinearOrder Rlt
Rlt_epsilon Rlt_epsilon
RdisjunctEpsilon IQR IQR_lt lt_IQR
Rplus Ropp Rmult
IQR_plus_quot IQR_mult_quot
Rring RringExt Rzero_lt_one
Rplus_lt_compat_l Rplus_reg_l Rmult_pos
Rinv_quot Rleft_inverse Rinv_pos
Rarchimedean Rabove_pos
Rabs_quot RabsLUB Rcomplete.
Definition Rrepr_morphism
: @ConstructiveRealsMorphism DRealConstructive CRealConstructive.
Definition Rabst_morphism
: @ConstructiveRealsMorphism CRealConstructive DRealConstructive.