Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (26611 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1022 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (806 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1548 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (595 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12054 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (959 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (629 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (308 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (475 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (505 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (912 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1508 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5124 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (166 entries)

L

L [definition, in Coq.Vectors.Fin]
land [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
land [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
land [definition, in Coq.Init.Nat]
land [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
land [abbreviation, in Coq.Numbers.Cyclic.Int63.Uint63]
landA [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
landC [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
land_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
land_spec' [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
land_spec [axiom, in Coq.Numbers.Cyclic.Int63.Uint63]
land0 [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
land0_r [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
land31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
last [definition, in Coq.Lists.List]
last [definition, in Coq.Vectors.VectorDef]
last_last [lemma, in Coq.Lists.List]
last_length [lemma, in Coq.Lists.List]
law_cosines [lemma, in Coq.Reals.Rgeom]
lb_to_glb [lemma, in Coq.Reals.SeqProp]
ldiff [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
ldiff [definition, in Coq.Init.Nat]
ldiff_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
ldiff31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
ldshiftexp [axiom, in Coq.Floats.PrimFloat]
ldshiftexp_spec [axiom, in Coq.Floats.FloatAxioms]
le [inductive, in Coq.Init.Peano]
le [definition, in Coq.Bool.Bool]
Le [library]
leaf [definition, in Coq.micromega.ZMicromega]
leA_Tree_Node [lemma, in Coq.Sorting.Heap]
leA_Tree_Leaf [lemma, in Coq.Sorting.Heap]
leA_Tree [definition, in Coq.Sorting.Heap]
leb [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
leb [axiom, in Coq.Floats.PrimFloat]
leb [definition, in Coq.Strings.String]
leb [abbreviation, in Coq.Arith.Compare_dec]
leb [definition, in Coq.Init.Nat]
leb [definition, in Coq.Strings.Ascii]
leb [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
leb [abbreviation, in Coq.Numbers.Cyclic.Int63.Uint63]
leb [abbreviation, in Coq.Numbers.Cyclic.Int63.Sint63]
LebIsTotal [module, in Coq.Structures.Orders]
LebIsTotal.leb_total [axiom, in Coq.Structures.Orders]
LebIsTransitive [module, in Coq.Structures.Orders]
LebIsTransitive.leb_trans [axiom, in Coq.Structures.Orders]
LebNotation [module, in Coq.Structures.Orders]
_ <=? _ [notation, in Coq.Structures.Orders]
LeBool [module, in Coq.Structures.Orders]
LeBool' [module, in Coq.Structures.Orders]
lebP [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lebP [lemma, in Coq.Numbers.Cyclic.Int63.Sint63]
LebSpec [module, in Coq.Structures.Orders]
LebSpec.leb_le [axiom, in Coq.Structures.Orders]
leb_le [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
leb_total [lemma, in Coq.Strings.String]
leb_antisym [lemma, in Coq.Strings.String]
leb_compare [lemma, in Coq.Arith.Compare_dec]
leb_complete_conv [lemma, in Coq.Arith.Compare_dec]
leb_correct_conv [lemma, in Coq.Arith.Compare_dec]
leb_complete [lemma, in Coq.Arith.Compare_dec]
leb_correct [lemma, in Coq.Arith.Compare_dec]
leb_iff_conv [lemma, in Coq.Arith.Compare_dec]
leb_iff [abbreviation, in Coq.Arith.Compare_dec]
leb_length [axiom, in Coq.Array.PArray]
leb_le [lemma, in Coq.micromega.ZifySint63]
leb_total [lemma, in Coq.Strings.Ascii]
leb_antisym [lemma, in Coq.Strings.Ascii]
leb_le [lemma, in Coq.micromega.ZifyUint63]
leb_spec [axiom, in Coq.Numbers.Cyclic.Int63.Uint63]
leb_spec [axiom, in Coq.Numbers.Cyclic.Int63.Sint63]
leb_spec [axiom, in Coq.Floats.FloatAxioms]
left [constructor, in Coq.Init.Specif]
left [abbreviation, in Coq.setoid_ring.Field_theory]
leftinv_is_rightinv_interv [lemma, in Coq.Reals.Ranalysis5]
leftinv_is_rightinv [lemma, in Coq.Reals.Ranalysis5]
left_transitive [definition, in Coq.ssr.ssrbool]
left_loop [definition, in Coq.ssr.ssrfun]
left_commutative [definition, in Coq.ssr.ssrfun]
left_id [definition, in Coq.ssr.ssrfun]
left_distributive [definition, in Coq.ssr.ssrfun]
left_zero [definition, in Coq.ssr.ssrfun]
left_injective [definition, in Coq.ssr.ssrfun]
left_inverse [definition, in Coq.ssr.ssrfun]
left_prefix [lemma, in Coq.Wellfounded.Lexicographic_Exponentiation]
left_sym [constructor, in Coq.Relations.Relation_Operators]
left_slex [constructor, in Coq.Relations.Relation_Operators]
left_lex [constructor, in Coq.Relations.Relation_Operators]
Leibniz [module, in Coq.Floats.PrimFloat]
Leibniz [module, in Coq.Floats.FloatAxioms]
Leibniz.eqb [axiom, in Coq.Floats.PrimFloat]
Leibniz.eqb_spec [axiom, in Coq.Floats.FloatAxioms]
LeIsLtEq [module, in Coq.Structures.Orders]
LeIsLtEq.le_lteq [axiom, in Coq.Structures.Orders]
lel [definition, in Coq.Lists.List]
lelistA [abbreviation, in Coq.Sorting.Sorted]
lelistA_inv [abbreviation, in Coq.Sorting.Sorted]
lel_nil [lemma, in Coq.Lists.List]
lel_tail [lemma, in Coq.Lists.List]
lel_cons [lemma, in Coq.Lists.List]
lel_cons_cons [lemma, in Coq.Lists.List]
lel_trans [lemma, in Coq.Lists.List]
lel_refl [lemma, in Coq.Lists.List]
lemmas [module, in Coq.Logic.Adjointification]
lemmas.commute_homotopy_id [definition, in Coq.Logic.Adjointification]
Lemma1 [lemma, in Coq.Sets.Relations_2_facts]
length [definition, in Coq.Strings.String]
length [abbreviation, in Coq.Lists.List]
length [axiom, in Coq.Array.PArray]
length [definition, in Coq.Init.Datatypes]
length_to_list [lemma, in Coq.Vectors.VectorSpec]
length_lnzhead [lemma, in Coq.Numbers.DecimalFacts]
length_order.n [variable, in Coq.Lists.List]
length_order.m [variable, in Coq.Lists.List]
length_order.l [variable, in Coq.Lists.List]
length_order.b [variable, in Coq.Lists.List]
length_order.a [variable, in Coq.Lists.List]
length_order.A [variable, in Coq.Lists.List]
length_order [section, in Coq.Lists.List]
length_zero_iff_nil [lemma, in Coq.Lists.List]
length_copy [axiom, in Coq.Array.PArray]
length_set [axiom, in Coq.Array.PArray]
length_make [axiom, in Coq.Array.PArray]
length_map [lemma, in Coq.rtauto.Bintree]
length_lnzhead [lemma, in Coq.Numbers.HexadecimalFacts]
LeNotation [module, in Coq.Structures.Orders]
_ <= _ <= _ [notation, in Coq.Structures.Orders]
_ >= _ [notation, in Coq.Structures.Orders]
_ <= _ [notation, in Coq.Structures.Orders]
lesb [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
less_than_empty [lemma, in Coq.Sets.Powerset_facts]
less_than_singleton [lemma, in Coq.Sets.Powerset_Classical_facts]
Lexicographic_Exponentiation.List [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Exponentiation.Nil [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Exponentiation.leA [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Exponentiation.A [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Exponentiation [section, in Coq.Relations.Relation_Operators]
Lexicographic_Product.leB [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product.leA [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product.B [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product.A [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product [section, in Coq.Relations.Relation_Operators]
Lexicographic_Product [library]
Lexicographic_Exponentiation [library]
LexProd [abbreviation, in Coq.Wellfounded.Lexicographic_Product]
LexProd [abbreviation, in Coq.Wellfounded.Lexicographic_Product]
lexprod [inductive, in Coq.Relations.Relation_Operators]
lexprod_sind [definition, in Coq.Relations.Relation_Operators]
lexprod_ind [definition, in Coq.Relations.Relation_Operators]
Lex_Exp [abbreviation, in Coq.Wellfounded.Lexicographic_Exponentiation]
lex_exp [definition, in Coq.Relations.Relation_Operators]
le_minus [abbreviation, in Coq.Arith.Minus]
le_plus_minus [abbreviation, in Coq.Arith.Minus]
le_plus_minus_r [abbreviation, in Coq.Arith.Minus]
le_n_O_eq [abbreviation, in Coq.Arith.Le]
le_Sn_O [abbreviation, in Coq.Arith.Le]
le_O_n [abbreviation, in Coq.Arith.Le]
le_elim_rel [abbreviation, in Coq.Arith.Le]
le_elim_rel_stt [definition, in Coq.Arith.Le]
le_pred [abbreviation, in Coq.Arith.Le]
le_pred_n [abbreviation, in Coq.Arith.Le]
le_Sn_le [abbreviation, in Coq.Arith.Le]
le_Sn_le_stt [definition, in Coq.Arith.Le]
le_Sn_n [abbreviation, in Coq.Arith.Le]
le_n_Sn [abbreviation, in Coq.Arith.Le]
le_S_n [abbreviation, in Coq.Arith.Le]
le_n_S [abbreviation, in Coq.Arith.Le]
le_n_0_eq [abbreviation, in Coq.Arith.Le]
le_Sn_0 [abbreviation, in Coq.Arith.Le]
le_0_n [abbreviation, in Coq.Arith.Le]
le_antisym [abbreviation, in Coq.Arith.Le]
le_trans [abbreviation, in Coq.Arith.Le]
le_refl [abbreviation, in Coq.Arith.Le]
le_preorder [instance, in Coq.Bool.BoolOrder]
le_lteq [lemma, in Coq.Bool.BoolOrder]
le_lteq_dec [lemma, in Coq.Bool.BoolOrder]
le_compat [instance, in Coq.Bool.BoolOrder]
le_true [lemma, in Coq.Bool.BoolOrder]
le_trans [lemma, in Coq.Bool.BoolOrder]
le_refl [lemma, in Coq.Bool.BoolOrder]
le_le_S_eq [lemma, in Coq.Arith.Compare]
le_decide [lemma, in Coq.Arith.Compare]
le_dec [lemma, in Coq.Arith.Compare]
le_or_le_S [definition, in Coq.Arith.Compare]
le_WO_inv [lemma, in Coq.Wellfounded.Well_Ordering]
le_WO_sind [definition, in Coq.Wellfounded.Well_Ordering]
le_WO_ind [definition, in Coq.Wellfounded.Well_Ordering]
le_sup [constructor, in Coq.Wellfounded.Well_Ordering]
le_WO [inductive, in Coq.Wellfounded.Well_Ordering]
le_lt_n_Sm [definition, in Coq.Arith.Arith_prebase]
le_plus_minus_r_stt [definition, in Coq.Arith.Arith_prebase]
le_plus_minus_stt [definition, in Coq.Arith.Arith_prebase]
le_plus_trans_stt [definition, in Coq.Arith.Arith_prebase]
le_plus_r_stt [definition, in Coq.Arith.Arith_prebase]
le_gt_trans_stt [definition, in Coq.Arith.Arith_prebase]
le_gt_S_stt [definition, in Coq.Arith.Arith_prebase]
le_S_gt_stt [definition, in Coq.Arith.Arith_prebase]
le_not_gt_stt [definition, in Coq.Arith.Arith_prebase]
le_not_lt_stt [definition, in Coq.Arith.Arith_prebase]
le_lt_n_Sm_stt [definition, in Coq.Arith.Arith_prebase]
le_n_0_eq_stt [definition, in Coq.Arith.Arith_prebase]
le_n_S [lemma, in Coq.Init.Peano]
le_0_n [lemma, in Coq.Init.Peano]
le_S_n [lemma, in Coq.Init.Peano]
le_pred [lemma, in Coq.Init.Peano]
le_sind [definition, in Coq.Init.Peano]
le_ind [definition, in Coq.Init.Peano]
le_S [constructor, in Coq.Init.Peano]
le_n [constructor, in Coq.Init.Peano]
le_double [lemma, in Coq.Reals.ArithProp]
le_minusni_n [lemma, in Coq.Reals.ArithProp]
le_Pmult_nat [lemma, in Coq.PArith.Pnat]
le_dec [lemma, in Coq.Arith.Compare_dec]
le_lt_eq_dec [definition, in Coq.Arith.Compare_dec]
le_gt_dec [definition, in Coq.Arith.Compare_dec]
le_ge_dec [definition, in Coq.Arith.Compare_dec]
le_le_S_dec [definition, in Coq.Arith.Compare_dec]
le_lt_dec [definition, in Coq.Arith.Compare_dec]
le_n_2n [lemma, in Coq.Reals.Rprod]
Le_AsB [abbreviation, in Coq.Wellfounded.Disjoint_Union]
le_ni_le [lemma, in Coq.NArith.Ndist]
le_plus_trans [abbreviation, in Coq.Arith.Plus]
le_plus_r [abbreviation, in Coq.Arith.Plus]
le_plus_l [abbreviation, in Coq.Arith.Plus]
le_min_r [abbreviation, in Coq.Arith.Min]
le_min_l [abbreviation, in Coq.Arith.Min]
le_implb [lemma, in Coq.Bool.Bool]
le_lt_SS [lemma, in Coq.funind.Recdef]
le_refl [lemma, in Coq.Sets.Uniset]
le_total_order [lemma, in Coq.Sets.Integers]
le_Order [lemma, in Coq.Sets.Integers]
le_trans [lemma, in Coq.Sets.Integers]
le_antisym [lemma, in Coq.Sets.Integers]
le_reflexive [lemma, in Coq.Sets.Integers]
le_epsilon [abbreviation, in Coq.Reals.RIneq]
le_O_IZR [abbreviation, in Coq.Reals.RIneq]
le_IZR_R1 [lemma, in Coq.Reals.RIneq]
le_IZR [lemma, in Coq.Reals.RIneq]
le_0_IZR [lemma, in Coq.Reals.RIneq]
le_IPR [lemma, in Coq.Reals.RIneq]
le_INR [lemma, in Coq.Reals.RIneq]
le_gt_trans [abbreviation, in Coq.Arith.Gt]
le_gt_S [abbreviation, in Coq.Arith.Gt]
le_S_gt [abbreviation, in Coq.Arith.Gt]
le_not_gt [abbreviation, in Coq.Arith.Gt]
le_inject_Q [lemma, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
le_max_r [abbreviation, in Coq.Arith.Max]
le_max_l [abbreviation, in Coq.Arith.Max]
le_neg [lemma, in Coq.micromega.ZMicromega]
le_0_iff [lemma, in Coq.micromega.ZMicromega]
le_AsB_sind [definition, in Coq.Relations.Relation_Operators]
le_AsB_ind [definition, in Coq.Relations.Relation_Operators]
le_bb [constructor, in Coq.Relations.Relation_Operators]
le_ab [constructor, in Coq.Relations.Relation_Operators]
le_aa [constructor, in Coq.Relations.Relation_Operators]
le_AsB [inductive, in Coq.Relations.Relation_Operators]
le_unique [lemma, in Coq.Arith.Peano_dec]
le_or_lt [abbreviation, in Coq.Arith.Lt]
le_lt_or_eq [abbreviation, in Coq.Arith.Lt]
le_lt_or_eq_stt [definition, in Coq.Arith.Lt]
le_lt_or_eq_iff [abbreviation, in Coq.Arith.Lt]
le_lt_trans [abbreviation, in Coq.Arith.Lt]
le_not_lt [abbreviation, in Coq.Arith.Lt]
le_lt_n_Sm [abbreviation, in Coq.Arith.Lt]
Lget [definition, in Coq.rtauto.Bintree]
Lget_app_Some [lemma, in Coq.rtauto.Bintree]
Lget_app [lemma, in Coq.rtauto.Bintree]
Lget_map [lemma, in Coq.rtauto.Bintree]
Lia [library]
limit_index_above_all_indices [lemma, in Coq.Reals.Runcountable]
limit_inv [lemma, in Coq.Reals.Rlimit]
limit_comp [lemma, in Coq.Reals.Rlimit]
limit_mul [lemma, in Coq.Reals.Rlimit]
limit_free [lemma, in Coq.Reals.Rlimit]
limit_minus [lemma, in Coq.Reals.Rlimit]
limit_Ropp [lemma, in Coq.Reals.Rlimit]
limit_plus [lemma, in Coq.Reals.Rlimit]
limit_in [definition, in Coq.Reals.Rlimit]
limit1_imp [lemma, in Coq.Reals.Rpower]
limit1_ext [lemma, in Coq.Reals.Rpower]
limit1_in [definition, in Coq.Reals.Rlimit]
lim_x [lemma, in Coq.Reals.Rlimit]
linear [inductive, in Coq.btauto.Algebra]
linear [record, in Coq.setoid_ring.Field_theory]
linear_search_from_0_rel [lemma, in Coq.Logic.ConstructiveEpsilon]
linear_search_from_0 [definition, in Coq.Logic.ConstructiveEpsilon]
linear_search_rel [lemma, in Coq.Logic.ConstructiveEpsilon]
linear_search [definition, in Coq.Logic.ConstructiveEpsilon]
linear_search_from_0_conform [definition, in Coq.Logic.ConstructiveEpsilon]
linear_search_conform_alt [definition, in Coq.Logic.ConstructiveEpsilon]
linear_search_conform [definition, in Coq.Logic.ConstructiveEpsilon]
linear_reduce [lemma, in Coq.btauto.Algebra]
linear_reduce_aux [lemma, in Coq.btauto.Algebra]
linear_valid_incl [lemma, in Coq.btauto.Algebra]
linear_le_compat [lemma, in Coq.btauto.Algebra]
linear_sind [definition, in Coq.btauto.Algebra]
linear_ind [definition, in Coq.btauto.Algebra]
linear_poly [constructor, in Coq.btauto.Algebra]
linear_cst [constructor, in Coq.btauto.Algebra]
linear_order_T [definition, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
list [abbreviation, in Coq.Lists.List]
List [abbreviation, in Coq.Wellfounded.Lexicographic_Exponentiation]
list [inductive, in Coq.Init.Datatypes]
List [library]
List [library]
ListDec [library]
Listing [definition, in Coq.Logic.FinFun]
Listing_decidable_eq [lemma, in Coq.Logic.FinFun]
ListNotations [module, in Coq.Lists.List]
[ _ ; _ ; .. ; _ ] (list_scope) [notation, in Coq.Lists.List]
[ _ ] (list_scope) [notation, in Coq.Lists.List]
[ ] (list_scope) [notation, in Coq.Lists.List]
ListOps [section, in Coq.Lists.List]
ListOps.A [variable, in Coq.Lists.List]
ListOps.eq_dec [variable, in Coq.Lists.List]
ListPairs [section, in Coq.Lists.List]
ListPairs.A [variable, in Coq.Lists.List]
ListPairs.B [variable, in Coq.Lists.List]
Lists [section, in Coq.Lists.List]
ListSet [library]
Lists.A [variable, in Coq.Lists.List]
ListTactics [library]
list_contents [abbreviation, in Coq.Sorting.PermutEq]
list_contents_app [lemma, in Coq.Sorting.PermutSetoid]
list_contents [definition, in Coq.Sorting.PermutSetoid]
list_byte_of_string_of_list_byte [lemma, in Coq.Strings.String]
list_byte_of_string [definition, in Coq.Strings.String]
list_ascii_of_string_of_list_ascii [lemma, in Coq.Strings.String]
list_ascii_of_string [definition, in Coq.Strings.String]
list_ind [abbreviation, in Coq.Lists.List]
list_rec [abbreviation, in Coq.Lists.List]
list_rect [abbreviation, in Coq.Lists.List]
list_max_lt [lemma, in Coq.Lists.List]
list_max_le [lemma, in Coq.Lists.List]
list_max_app [lemma, in Coq.Lists.List]
list_max [definition, in Coq.Lists.List]
list_power_length [lemma, in Coq.Lists.List]
list_sum_app [lemma, in Coq.Lists.List]
list_sum [definition, in Coq.Lists.List]
list_prod [definition, in Coq.Lists.List]
list_power [definition, in Coq.Lists.List]
list_eq_dec [lemma, in Coq.Lists.List]
list_nth [definition, in Coq.btauto.Algebra]
list_reifyl [definition, in Coq.setoid_ring.Ncring_tac]
list_eqdec [instance, in Coq.Classes.EquivDec]
list_sind [definition, in Coq.Init.Datatypes]
list_rec [definition, in Coq.Init.Datatypes]
list_ind [definition, in Coq.Init.Datatypes]
list_rect [definition, in Coq.Init.Datatypes]
list_replace_nth_2 [lemma, in Coq.btauto.Reflect]
list_replace_nth_1 [lemma, in Coq.btauto.Reflect]
list_nth_nil [lemma, in Coq.btauto.Reflect]
list_nth_succ [lemma, in Coq.btauto.Reflect]
list_nth_base [lemma, in Coq.btauto.Reflect]
list_replace [definition, in Coq.btauto.Reflect]
list_to_heap [lemma, in Coq.Sorting.Heap]
Little [module, in Coq.Init.Decimal]
Little [module, in Coq.Init.Hexadecimal]
little_endian_of_string [definition, in Coq.Strings.ByteVector]
little_endian_to_string [definition, in Coq.Strings.ByteVector]
Little.double [definition, in Coq.Init.Decimal]
Little.double [definition, in Coq.Init.Hexadecimal]
Little.succ [definition, in Coq.Init.Decimal]
Little.succ [definition, in Coq.Init.Hexadecimal]
Little.succ_double [definition, in Coq.Init.Decimal]
Little.succ_double [definition, in Coq.Init.Hexadecimal]
ln [definition, in Coq.Reals.Rpower]
lnorm [definition, in Coq.Numbers.DecimalFacts]
lnorm [definition, in Coq.Numbers.HexadecimalFacts]
lnot31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
lnzhead [definition, in Coq.Numbers.DecimalFacts]
lnzhead [definition, in Coq.Numbers.HexadecimalFacts]
lnzhead_head_nd0 [lemma, in Coq.Numbers.DecimalFacts]
lnzhead_neq_d0_head [lemma, in Coq.Numbers.DecimalFacts]
lnzhead_head_nd0 [lemma, in Coq.Numbers.HexadecimalFacts]
lnzhead_neq_d0_head [lemma, in Coq.Numbers.HexadecimalFacts]
lnztail [definition, in Coq.Numbers.DecimalFacts]
lnztail [definition, in Coq.Numbers.HexadecimalFacts]
ln_lt_2 [lemma, in Coq.Reals.Rpower]
ln_Rpower [lemma, in Coq.Reals.Rpower]
ln_continue [lemma, in Coq.Reals.Rpower]
ln_Rinv [lemma, in Coq.Reals.Rpower]
ln_pow [lemma, in Coq.Reals.Rpower]
ln_mult [lemma, in Coq.Reals.Rpower]
ln_neq_0 [lemma, in Coq.Reals.Rpower]
ln_inv [lemma, in Coq.Reals.Rpower]
ln_lt_inv [lemma, in Coq.Reals.Rpower]
ln_1 [lemma, in Coq.Reals.Rpower]
ln_exp [lemma, in Coq.Reals.Rpower]
ln_increasing [lemma, in Coq.Reals.Rpower]
ln_exists [lemma, in Coq.Reals.Rpower]
ln_exists1 [lemma, in Coq.Reals.Rpower]
LocalGlobal [section, in Coq.ssr.ssrbool]
LocalGlobal.allQ1 [variable, in Coq.ssr.ssrbool]
LocalGlobal.allQ1l [variable, in Coq.ssr.ssrbool]
LocalGlobal.allQ2 [variable, in Coq.ssr.ssrbool]
LocalGlobal.d1 [variable, in Coq.ssr.ssrbool]
LocalGlobal.D1 [variable, in Coq.ssr.ssrbool]
LocalGlobal.d1' [variable, in Coq.ssr.ssrbool]
LocalGlobal.d2 [variable, in Coq.ssr.ssrbool]
LocalGlobal.D2 [variable, in Coq.ssr.ssrbool]
LocalGlobal.d2' [variable, in Coq.ssr.ssrbool]
LocalGlobal.d3 [variable, in Coq.ssr.ssrbool]
LocalGlobal.D3 [variable, in Coq.ssr.ssrbool]
LocalGlobal.d3' [variable, in Coq.ssr.ssrbool]
LocalGlobal.f [variable, in Coq.ssr.ssrbool]
LocalGlobal.f' [variable, in Coq.ssr.ssrbool]
LocalGlobal.g [variable, in Coq.ssr.ssrbool]
LocalGlobal.h [variable, in Coq.ssr.ssrbool]
LocalGlobal.P1 [variable, in Coq.ssr.ssrbool]
LocalGlobal.P2 [variable, in Coq.ssr.ssrbool]
LocalGlobal.P3 [variable, in Coq.ssr.ssrbool]
LocalGlobal.Q1 [variable, in Coq.ssr.ssrbool]
LocalGlobal.Q1l [variable, in Coq.ssr.ssrbool]
LocalGlobal.Q2 [variable, in Coq.ssr.ssrbool]
LocalGlobal.sub1 [variable, in Coq.ssr.ssrbool]
LocalGlobal.sub2 [variable, in Coq.ssr.ssrbool]
LocalGlobal.sub3 [variable, in Coq.ssr.ssrbool]
LocalGlobal.T1 [variable, in Coq.ssr.ssrbool]
LocalGlobal.T2 [variable, in Coq.ssr.ssrbool]
LocalGlobal.T3 [variable, in Coq.ssr.ssrbool]
LocallySorted [inductive, in Coq.Sorting.Sorted]
LocallySorted_sind [definition, in Coq.Sorting.Sorted]
LocallySorted_ind [definition, in Coq.Sorting.Sorted]
Locally_confluent [definition, in Coq.Sets.Relations_3]
locally_confluent [definition, in Coq.Sets.Relations_3]
LocalProperties [section, in Coq.ssr.ssrbool]
LocalProperties.d1 [variable, in Coq.ssr.ssrbool]
LocalProperties.d2 [variable, in Coq.ssr.ssrbool]
LocalProperties.d3 [variable, in Coq.ssr.ssrbool]
LocalProperties.f [variable, in Coq.ssr.ssrbool]
LocalProperties.T1 [variable, in Coq.ssr.ssrbool]
LocalProperties.T2 [variable, in Coq.ssr.ssrbool]
LocalProperties.T3 [variable, in Coq.ssr.ssrbool]
local_mkpow_ok [lemma, in Coq.setoid_ring.Ring_polynom]
location [inductive, in Coq.Floats.SpecFloat]
location_sind [definition, in Coq.Floats.SpecFloat]
location_rec [definition, in Coq.Floats.SpecFloat]
location_ind [definition, in Coq.Floats.SpecFloat]
location_rect [definition, in Coq.Floats.SpecFloat]
lock [lemma, in Coq.ssr.ssreflect]
locked [definition, in Coq.ssr.ssreflect]
locked_with_unlockable [definition, in Coq.ssr.ssreflect]
locked_withE [lemma, in Coq.ssr.ssreflect]
locked_with [definition, in Coq.ssr.ssreflect]
loc_of_shr_record [definition, in Coq.Floats.SpecFloat]
loc_Inexact [constructor, in Coq.Floats.SpecFloat]
loc_Exact [constructor, in Coq.Floats.SpecFloat]
Logic [library]
Logic_lemmas.equality.z [variable, in Coq.Init.Logic]
Logic_lemmas.equality.y [variable, in Coq.Init.Logic]
Logic_lemmas.equality.x [variable, in Coq.Init.Logic]
Logic_lemmas.equality.f [variable, in Coq.Init.Logic]
Logic_lemmas.equality.B [variable, in Coq.Init.Logic]
Logic_lemmas.equality.A [variable, in Coq.Init.Logic]
Logic_lemmas.equality [section, in Coq.Init.Logic]
Logic_lemmas [section, in Coq.Init.Logic]
log2 [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
log2 [definition, in Coq.Init.Nat]
Log2 [module, in Coq.Numbers.NatInt.NZLog]
log2_nonpos [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
log2_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
log2_iter_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
log2_iter [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
log2_phi_bounded [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
log2_iter [definition, in Coq.Init.Nat]
Log2.log2 [axiom, in Coq.Numbers.NatInt.NZLog]
lor [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
lor [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
lor [definition, in Coq.Init.Nat]
lor [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
lor [abbreviation, in Coq.Numbers.Cyclic.Int63.Uint63]
lorA [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lorC [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lor_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
lor_spec' [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lor_le [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lor_lsr [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lor_spec [axiom, in Coq.Numbers.Cyclic.Int63.Uint63]
lor0 [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lor0_r [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lor31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
lowerCutAbove [lemma, in Coq.Reals.ClassicalDedekindReals]
lowerCutBelow [lemma, in Coq.Reals.ClassicalDedekindReals]
lowerUpper [lemma, in Coq.Reals.ClassicalDedekindReals]
Lower_Bound_sind [definition, in Coq.Sets.Cpo]
Lower_Bound_rec [definition, in Coq.Sets.Cpo]
Lower_Bound_ind [definition, in Coq.Sets.Cpo]
Lower_Bound_rect [definition, in Coq.Sets.Cpo]
Lower_Bound_definition [constructor, in Coq.Sets.Cpo]
Lower_Bound [inductive, in Coq.Sets.Cpo]
low_trans [lemma, in Coq.Sorting.Heap]
Lqa [library]
Lra [library]
lshiftl [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
lsl [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
lsl [abbreviation, in Coq.Numbers.Cyclic.Int63.Uint63]
lsl_add_distr [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lsl_spec [axiom, in Coq.Numbers.Cyclic.Int63.Uint63]
lsl0 [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lsl0_r [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
LSorted_consn [constructor, in Coq.Sorting.Sorted]
LSorted_cons1 [constructor, in Coq.Sorting.Sorted]
LSorted_nil [constructor, in Coq.Sorting.Sorted]
lsr [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
lsr [abbreviation, in Coq.Numbers.Cyclic.Int63.Uint63]
lsr_M_r [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lsr_add [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lsr_1 [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lsr_0_r [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lsr_spec [axiom, in Coq.Numbers.Cyclic.Int63.Uint63]
lsr0 [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lt [definition, in Coq.Init.Peano]
lt [definition, in Coq.Bool.Bool]
LT [constructor, in Coq.Structures.OrderedType]
Lt [constructor, in Coq.Init.Datatypes]
Lt [library]
Ltac [library]
Ltac1 [library]
Ltac2 [library]
ltb [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
ltb [axiom, in Coq.Floats.PrimFloat]
ltb [definition, in Coq.Strings.String]
ltb [definition, in Coq.Init.Nat]
ltb [definition, in Coq.Strings.Ascii]
ltb [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
ltb [abbreviation, in Coq.Numbers.Cyclic.Int63.Uint63]
ltb [abbreviation, in Coq.Numbers.Cyclic.Int63.Sint63]
LtbNotation [module, in Coq.Structures.Orders]
_ <? _ [notation, in Coq.Structures.Orders]
LtBool [module, in Coq.Structures.Orders]
LtBool' [module, in Coq.Structures.Orders]
ltbP [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
ltbP [lemma, in Coq.Numbers.Cyclic.Int63.Sint63]
LtbSpec [module, in Coq.Structures.Orders]
LtbSpec.ltb_lt [axiom, in Coq.Structures.Orders]
ltb_lt [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
ltb_lt [lemma, in Coq.micromega.ZifySint63]
ltb_lt [lemma, in Coq.micromega.ZifyUint63]
ltb_spec [axiom, in Coq.Numbers.Cyclic.Int63.Uint63]
ltb_spec [axiom, in Coq.Numbers.Cyclic.Int63.Sint63]
ltb_spec [axiom, in Coq.Floats.FloatAxioms]
LtIsTotal [module, in Coq.Structures.Orders]
LtIsTotal.lt_total [axiom, in Coq.Structures.Orders]
ltl [abbreviation, in Coq.Wellfounded.Lexicographic_Exponentiation]
Ltl [inductive, in Coq.Relations.Relation_Operators]
LtLeNotation [module, in Coq.Structures.Orders]
_ < _ <= _ [notation, in Coq.Structures.Orders]
_ <= _ < _ [notation, in Coq.Structures.Orders]
ltl_unit [lemma, in Coq.Wellfounded.Lexicographic_Exponentiation]
Ltl_sind [definition, in Coq.Relations.Relation_Operators]
Ltl_ind [definition, in Coq.Relations.Relation_Operators]
LtNotation [module, in Coq.Structures.Orders]
_ < _ < _ [notation, in Coq.Structures.Orders]
_ > _ [notation, in Coq.Structures.Orders]
_ < _ [notation, in Coq.Structures.Orders]
ltof [definition, in Coq.Arith.Wf_nat]
ltof_bdepth_split_r [lemma, in Coq.micromega.ZMicromega]
ltof_bdepth_split_l [lemma, in Coq.micromega.ZMicromega]
ltsb [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
lt_O_minus_lt [abbreviation, in Coq.Arith.Minus]
lt_minus [abbreviation, in Coq.Arith.Minus]
lt_CR_of_Q [projection, in Coq.Reals.Abstract.ConstructiveReals]
lt_strorder [instance, in Coq.Bool.BoolOrder]
lt_le_incl [lemma, in Coq.Bool.BoolOrder]
lt_total [lemma, in Coq.Bool.BoolOrder]
lt_trichotomy [lemma, in Coq.Bool.BoolOrder]
lt_compat [instance, in Coq.Bool.BoolOrder]
lt_trans [lemma, in Coq.Bool.BoolOrder]
lt_irrefl [lemma, in Coq.Bool.BoolOrder]
lt_or_eq [definition, in Coq.Arith.Compare]
lt_div2 [abbreviation, in Coq.Arith.Div2]
lt_S_n [definition, in Coq.Arith.Arith_prebase]
lt_n_Sm_le [definition, in Coq.Arith.Arith_prebase]
lt_O_minus_lt_stt [definition, in Coq.Arith.Arith_prebase]
lt_plus_trans_stt [definition, in Coq.Arith.Arith_prebase]
lt_pred_n_n_stt [definition, in Coq.Arith.Arith_prebase]
lt_pred_stt [definition, in Coq.Arith.Arith_prebase]
lt_S_n_stt [definition, in Coq.Arith.Arith_prebase]
lt_n_S_stt [definition, in Coq.Arith.Arith_prebase]
lt_0_neq_stt [definition, in Coq.Arith.Arith_prebase]
lt_not_le_stt [definition, in Coq.Arith.Arith_prebase]
lt_n_Sm_le_stt [definition, in Coq.Arith.Arith_prebase]
lt_le_S_stt [definition, in Coq.Arith.Arith_prebase]
lt_ge_dec [definition, in Coq.Arith.Bool_nat]
lt_minus_O_lt [lemma, in Coq.Reals.ArithProp]
lt_O_fact [lemma, in Coq.Arith.Factorial]
lt_O_nat_of_P [abbreviation, in Coq.PArith.Pnat]
lt_dec [lemma, in Coq.Arith.Compare_dec]
lt_eq_lt_dec [definition, in Coq.Arith.Compare_dec]
LT_WF_REL.F_compat [variable, in Coq.Arith.Wf_nat]
LT_WF_REL.F [variable, in Coq.Arith.Wf_nat]
LT_WF_REL.R [variable, in Coq.Arith.Wf_nat]
LT_WF_REL.A [variable, in Coq.Arith.Wf_nat]
LT_WF_REL [section, in Coq.Arith.Wf_nat]
lt_wf_double_ind [lemma, in Coq.Arith.Wf_nat]
lt_wf_double_rec [lemma, in Coq.Arith.Wf_nat]
lt_wf_double_rect [lemma, in Coq.Arith.Wf_nat]
lt_wf_ind [lemma, in Coq.Arith.Wf_nat]
lt_wf_rec [lemma, in Coq.Arith.Wf_nat]
lt_wf_rec1 [lemma, in Coq.Arith.Wf_nat]
lt_wf_rect [lemma, in Coq.Arith.Wf_nat]
lt_wf_rect1 [lemma, in Coq.Arith.Wf_nat]
lt_wf [lemma, in Coq.Arith.Wf_nat]
lt_plus_trans [abbreviation, in Coq.Arith.Plus]
lt_O_IZR [abbreviation, in Coq.Reals.RIneq]
lt_INR_0 [abbreviation, in Coq.Reals.RIneq]
lt_IZR [lemma, in Coq.Reals.RIneq]
lt_0_IZR [lemma, in Coq.Reals.RIneq]
lt_1_IPR [lemma, in Coq.Reals.RIneq]
lt_IPR [lemma, in Coq.Reals.RIneq]
lt_1_INR [lemma, in Coq.Reals.RIneq]
lt_INR [lemma, in Coq.Reals.RIneq]
lt_0_INR [lemma, in Coq.Reals.RIneq]
lt_inject_Q [lemma, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
lt_pow_lt_log [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lt_le_iff [lemma, in Coq.micromega.ZMicromega]
lt_IQR [lemma, in Coq.Reals.ClassicalConstructiveReals]
Lt_tl [constructor, in Coq.Relations.Relation_Operators]
Lt_hd [constructor, in Coq.Relations.Relation_Operators]
Lt_nil [constructor, in Coq.Relations.Relation_Operators]
lt_n_O [abbreviation, in Coq.Arith.Lt]
lt_O_neq [abbreviation, in Coq.Arith.Lt]
lt_O_Sn [abbreviation, in Coq.Arith.Lt]
lt_le_weak [abbreviation, in Coq.Arith.Lt]
lt_le_trans [abbreviation, in Coq.Arith.Lt]
lt_trans [abbreviation, in Coq.Arith.Lt]
lt_pred_n_n [abbreviation, in Coq.Arith.Lt]
lt_pred [abbreviation, in Coq.Arith.Lt]
lt_S_n [abbreviation, in Coq.Arith.Lt]
lt_n_S [abbreviation, in Coq.Arith.Lt]
lt_S [abbreviation, in Coq.Arith.Lt]
lt_n_Sn [abbreviation, in Coq.Arith.Lt]
lt_0_neq [abbreviation, in Coq.Arith.Lt]
lt_n_0 [abbreviation, in Coq.Arith.Lt]
lt_0_Sn [abbreviation, in Coq.Arith.Lt]
lt_asym [abbreviation, in Coq.Arith.Lt]
lt_not_le [abbreviation, in Coq.Arith.Lt]
lt_n_Sm_le [abbreviation, in Coq.Arith.Lt]
lt_le_S [abbreviation, in Coq.Arith.Lt]
lt_irrefl [abbreviation, in Coq.Arith.Lt]
Lub [inductive, in Coq.Sets.Cpo]
lub [definition, in Coq.Reals.SeqProp]
Lub_sind [definition, in Coq.Sets.Cpo]
Lub_rec [definition, in Coq.Sets.Cpo]
Lub_ind [definition, in Coq.Sets.Cpo]
Lub_rect [definition, in Coq.Sets.Cpo]
Lub_definition [constructor, in Coq.Sets.Cpo]
lunorm [definition, in Coq.Numbers.DecimalFacts]
lunorm [definition, in Coq.Numbers.HexadecimalFacts]
lxor [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
lxor [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
lxor [definition, in Coq.Init.Nat]
lxor [axiom, in Coq.Numbers.Cyclic.Int63.PrimInt63]
lxor [abbreviation, in Coq.Numbers.Cyclic.Int63.Uint63]
lxorA [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lxorC [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lxor_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
lxor_spec' [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lxor_spec [axiom, in Coq.Numbers.Cyclic.Int63.Uint63]
lxor0 [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lxor0_r [lemma, in Coq.Numbers.Cyclic.Int63.Uint63]
lxor31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
lzero [definition, in Coq.Numbers.DecimalFacts]
lzero [definition, in Coq.Numbers.HexadecimalFacts]
L_R_neq [lemma, in Coq.Vectors.Fin]
L_R [definition, in Coq.Vectors.Fin]
L_inj [lemma, in Coq.Vectors.Fin]
L_sanity [lemma, in Coq.Vectors.Fin]
L1 [lemma, in Coq.Logic.Berardi]
l2i [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
l2i_i2l [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (26611 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1022 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (806 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1548 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (595 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12054 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (959 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (629 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (308 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (475 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (505 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (912 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1508 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5124 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (166 entries)