Library Coq.Logic.Adjointification
Turn a pair of inverse functions into an adjoint equivalence
Module Import lemmas.
Definition commute_homotopy_id {A} {f : A -> A}
(H : forall a, f a = a) {x y : A} (p : x = y)
: eq_trans (H x) p = eq_trans (f_equal f p) (H y)
:= match p in (_ = y)
return eq_trans (H x) p = eq_trans (f_equal f p) (H y)
with eq_refl => eq_sym (eq_trans_refl_l (H x)) end.
End lemmas.
Section adjointify.
Context {A B} (f : A -> B) (g : B -> A).
One adjoint equation implies the other
Section g_adjoint.
Context
(gf_id : forall a, g (f a) = a)
(fg_id : forall b, f (g b) = b).
Definition f_adjoint_gives_g_adjoint_pointwise
(b : B) (f_adjoint_at_gb : fg_id (f (g b)) = f_equal f (gf_id (g b)))
: gf_id (g b) = f_equal g (fg_id b)
:= let precomposed_eq
: eq_trans (f_equal (fun a => g (f a)) (f_equal g (fg_id b)))
(gf_id (g b)) =
eq_trans (f_equal g (f_equal (fun b => f (g b)) (fg_id b)))
(f_equal g (fg_id b))
:= eq_trans
(eq_sym (commute_homotopy_id gf_id (f_equal g (fg_id b))))
(eq_rect (f_equal g (fg_id (f (g b)))) (fun p => eq_trans p _ = _)
(eq_trans (eq_trans
(eq_sym (eq_trans_map_distr g _ _))
(f_equal (fun p => f_equal g p)
(commute_homotopy_id fg_id (fg_id b))))
(eq_trans_map_distr g _ _)) _
(eq_trans (eq_trans
(f_equal (fun p => f_equal g p) f_adjoint_at_gb)
(f_equal_compose f g _))
(eq_id_comm_r _ gf_id (g b)))) in
match fg_id b as p
return
forall p1 p2,
eq_trans (f_equal _ (f_equal g p)) p1 =
eq_trans (f_equal g (f_equal _ p)) p2 ->
p1 = p2
with eq_refl => fun p1 p2 eq =>
eq_trans (eq_trans
(eq_sym (eq_trans_refl_l _))
eq)
(eq_trans_refl_l _)
end (gf_id (g b)) (f_equal g (fg_id b)) precomposed_eq.
Context
(gf_id : forall a, g (f a) = a)
(fg_id : forall b, f (g b) = b).
Definition f_adjoint_gives_g_adjoint_pointwise
(b : B) (f_adjoint_at_gb : fg_id (f (g b)) = f_equal f (gf_id (g b)))
: gf_id (g b) = f_equal g (fg_id b)
:= let precomposed_eq
: eq_trans (f_equal (fun a => g (f a)) (f_equal g (fg_id b)))
(gf_id (g b)) =
eq_trans (f_equal g (f_equal (fun b => f (g b)) (fg_id b)))
(f_equal g (fg_id b))
:= eq_trans
(eq_sym (commute_homotopy_id gf_id (f_equal g (fg_id b))))
(eq_rect (f_equal g (fg_id (f (g b)))) (fun p => eq_trans p _ = _)
(eq_trans (eq_trans
(eq_sym (eq_trans_map_distr g _ _))
(f_equal (fun p => f_equal g p)
(commute_homotopy_id fg_id (fg_id b))))
(eq_trans_map_distr g _ _)) _
(eq_trans (eq_trans
(f_equal (fun p => f_equal g p) f_adjoint_at_gb)
(f_equal_compose f g _))
(eq_id_comm_r _ gf_id (g b)))) in
match fg_id b as p
return
forall p1 p2,
eq_trans (f_equal _ (f_equal g p)) p1 =
eq_trans (f_equal g (f_equal _ p)) p2 ->
p1 = p2
with eq_refl => fun p1 p2 eq =>
eq_trans (eq_trans
(eq_sym (eq_trans_refl_l _))
eq)
(eq_trans_refl_l _)
end (gf_id (g b)) (f_equal g (fg_id b)) precomposed_eq.
We can flip an adjoint equivalence around without changing the proofs.
Definition f_adjoint_gives_g_adjoint
(f_adjoint : forall a, fg_id (f a) = f_equal f (gf_id a))
(b : B) : gf_id (g b) = f_equal g (fg_id b)
:= f_adjoint_gives_g_adjoint_pointwise b (f_adjoint (g b)).
End g_adjoint.
Section correction.
Context
(gf_id : forall a, g (f a) = a)
(fg_id : forall b, f (g b) = b).
(f_adjoint : forall a, fg_id (f a) = f_equal f (gf_id a))
(b : B) : gf_id (g b) = f_equal g (fg_id b)
:= f_adjoint_gives_g_adjoint_pointwise b (f_adjoint (g b)).
End g_adjoint.
Section correction.
Context
(gf_id : forall a, g (f a) = a)
(fg_id : forall b, f (g b) = b).
Modifies the proof of (f (g b) = b) to be adjoint
Definition fg_id' b : f (g b) = b
:= eq_trans (eq_sym (fg_id (f (g b))))
(eq_trans (f_equal f (gf_id (g b))) (fg_id b)).
:= eq_trans (eq_sym (fg_id (f (g b))))
(eq_trans (f_equal f (gf_id (g b))) (fg_id b)).
The main lemma:
Definition f_adjoint a : fg_id' (f a) = f_equal f (gf_id a)
:= let symmetric_eq
: eq_trans (f_equal f (gf_id (g (f a)))) (fg_id (f a)) =
eq_trans (fg_id (f (g (f a)))) (f_equal f (gf_id a))
:= eq_trans (eq_trans
(f_equal (fun H => eq_trans (f_equal f H) (fg_id (f a)))
(eq_sym (eq_id_comm_r _ gf_id a)))
(f_equal (fun p => eq_trans p _)
(eq_trans
(f_equal_compose (fun a => g (f a)) f _)
(eq_sym (f_equal_compose f (fun b => f (g b)) _)))))
(eq_sym (commute_homotopy_id fg_id (f_equal f (gf_id a)))) in
match fg_id (f (g (f a))) as p
return forall p', _ = eq_trans p p' -> eq_trans (eq_sym p) _ = p'
with eq_refl => fun p' eq =>
eq_trans (eq_trans_refl_l _) (eq_trans eq (eq_trans_refl_l _))
end _ symmetric_eq.
:= let symmetric_eq
: eq_trans (f_equal f (gf_id (g (f a)))) (fg_id (f a)) =
eq_trans (fg_id (f (g (f a)))) (f_equal f (gf_id a))
:= eq_trans (eq_trans
(f_equal (fun H => eq_trans (f_equal f H) (fg_id (f a)))
(eq_sym (eq_id_comm_r _ gf_id a)))
(f_equal (fun p => eq_trans p _)
(eq_trans
(f_equal_compose (fun a => g (f a)) f _)
(eq_sym (f_equal_compose f (fun b => f (g b)) _)))))
(eq_sym (commute_homotopy_id fg_id (f_equal f (gf_id a)))) in
match fg_id (f (g (f a))) as p
return forall p', _ = eq_trans p p' -> eq_trans (eq_sym p) _ = p'
with eq_refl => fun p' eq =>
eq_trans (eq_trans_refl_l _) (eq_trans eq (eq_trans_refl_l _))
end _ symmetric_eq.
And the symmetric version. Note that we use the same proofs of inverse.