Library Coq.Numbers.Natural.Abstract.NPow
Properties of the power function
Derived properties of power, specialized on natural numbers
Module Type NPowProp
(Import A : NAxiomsSig')
(Import B : NSubProp A)
(Import C : NParityProp A B).
Module Import Private_NZPow := Nop <+ NZPowProp A A B.
Ltac auto' := trivial; try rewrite <- neq_0_lt_0; auto using le_0_l.
Ltac wrap l := intros; apply l; auto'.
Lemma pow_succ_r' : forall a b, a^(S b) == a * a^b.
Power and basic constants
Lemma pow_0_l : forall a, a~=0 -> 0^a == 0.
Definition pow_1_r : forall a, a^1 == a
:= pow_1_r.
Lemma pow_1_l : forall a, 1^a == 1.
Definition pow_2_r : forall a, a^2 == a*a
:= pow_2_r.
Power and addition, multiplication
Lemma pow_add_r : forall a b c, a^(b+c) == a^b * a^c.
Lemma pow_mul_l : forall a b c, (a*b)^c == a^c * b^c.
Lemma pow_mul_r : forall a b c, a^(b*c) == (a^b)^c.
Power and nullity
Lemma pow_eq_0 : forall a b, b~=0 -> a^b == 0 -> a == 0.
Lemma pow_nonzero : forall a b, a~=0 -> a^b ~= 0.
Lemma pow_eq_0_iff : forall a b, a^b == 0 <-> b~=0 /\ a==0.
Monotonicity
Lemma pow_lt_mono_l : forall a b c, c~=0 -> a<b -> a^c < b^c.
Lemma pow_le_mono_l : forall a b c, a<=b -> a^c <= b^c.
Lemma pow_gt_1 : forall a b, 1<a -> b~=0 -> 1<a^b.
Lemma pow_lt_mono_r : forall a b c, 1<a -> b<c -> a^b < a^c.
NB: since 0^0 > 0^1, the following result isn't valid with a=0
Lemma pow_le_mono_r : forall a b c, a~=0 -> b<=c -> a^b <= a^c.
Lemma pow_le_mono : forall a b c d, a~=0 -> a<=c -> b<=d ->
a^b <= c^d.
Definition pow_lt_mono : forall a b c d, 0<a<c -> 0<b<d ->
a^b < c^d
:= pow_lt_mono.
Injectivity
Lemma pow_inj_l : forall a b c, c~=0 -> a^c == b^c -> a == b.
Lemma pow_inj_r : forall a b c, 1<a -> a^b == a^c -> b == c.
Monotonicity results, both ways
Lemma pow_lt_mono_l_iff : forall a b c, c~=0 ->
(a<b <-> a^c < b^c).
Lemma pow_le_mono_l_iff : forall a b c, c~=0 ->
(a<=b <-> a^c <= b^c).
Lemma pow_lt_mono_r_iff : forall a b c, 1<a ->
(b<c <-> a^b < a^c).
Lemma pow_le_mono_r_iff : forall a b c, 1<a ->
(b<=c <-> a^b <= a^c).
Lemma pow_lower_bound : forall a b, a~= 0 -> 1 <= a ^ b.
For any a>1, the a^x function is above the identity function
Someday, we should say something about the full Newton formula.
In the meantime, we can at least provide some inequalities about
(a+b)^c.
This upper bound can also be seen as a convexity proof for x^c :
image of (a+b)/2 is below the middle of the images of a and b
Power and parity