Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (72745 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1016 entries) |
Binder Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (47313 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (784 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1547 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (583 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (11764 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (959 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (627 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (308 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (475 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (492 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (903 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1448 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (4360 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (166 entries) |
R
R [module, in Coq.Reals.Rminmax]R [abbreviation, in Coq.Reals.Rdefinitions]
R [definition, in Coq.Vectors.Fin]
R [definition, in Coq.Logic.Berardi]
Rabove_pos [lemma, in Coq.Reals.ClassicalConstructiveReals]
Rabs [definition, in Coq.Reals.Rbasic_fun]
RabsLUB [lemma, in Coq.Reals.ClassicalConstructiveReals]
Rabst_morphism [definition, in Coq.Reals.ClassicalConstructiveReals]
Rabs_4 [lemma, in Coq.Reals.Ranalysis2]
Rabs_derive_2 [lemma, in Coq.Reals.Ranalysis4]
Rabs_derive_1 [lemma, in Coq.Reals.Ranalysis4]
Rabs_def1 [lemma, in Coq.Reals.Cauchy.ConstructiveCauchyAbs]
Rabs_Zabs [lemma, in Coq.Reals.Rbasic_fun]
Rabs_def2 [lemma, in Coq.Reals.Rbasic_fun]
Rabs_def1 [lemma, in Coq.Reals.Rbasic_fun]
Rabs_triang_inv2 [lemma, in Coq.Reals.Rbasic_fun]
Rabs_triang_inv [lemma, in Coq.Reals.Rbasic_fun]
Rabs_triang [lemma, in Coq.Reals.Rbasic_fun]
Rabs_Ropp [lemma, in Coq.Reals.Rbasic_fun]
Rabs_Rinv [abbreviation, in Coq.Reals.Rbasic_fun]
Rabs_Rinv_depr [lemma, in Coq.Reals.Rbasic_fun]
Rabs_inv [lemma, in Coq.Reals.Rbasic_fun]
Rabs_mult [lemma, in Coq.Reals.Rbasic_fun]
Rabs_minus_sym [lemma, in Coq.Reals.Rbasic_fun]
Rabs_pos_lt [lemma, in Coq.Reals.Rbasic_fun]
Rabs_Rabsolu [lemma, in Coq.Reals.Rbasic_fun]
Rabs_pos_eq [lemma, in Coq.Reals.Rbasic_fun]
Rabs_le [lemma, in Coq.Reals.Rbasic_fun]
Rabs_pos [lemma, in Coq.Reals.Rbasic_fun]
Rabs_left1 [lemma, in Coq.Reals.Rbasic_fun]
Rabs_right [lemma, in Coq.Reals.Rbasic_fun]
Rabs_left [lemma, in Coq.Reals.Rbasic_fun]
Rabs_no_R0 [lemma, in Coq.Reals.Rbasic_fun]
Rabs_R1 [lemma, in Coq.Reals.Rbasic_fun]
Rabs_R0 [lemma, in Coq.Reals.Rbasic_fun]
Rabs_triang_gen [lemma, in Coq.Reals.PartSum]
Rabs_quot [definition, in Coq.Reals.ClassicalConstructiveReals]
Radd_ext [projection, in Coq.setoid_ring.Ring_theory]
Radd_assoc [projection, in Coq.setoid_ring.Ring_theory]
Radd_comm [projection, in Coq.setoid_ring.Ring_theory]
Radd_0_l [projection, in Coq.setoid_ring.Ring_theory]
radd_term_term' [lemma, in Coq.micromega.Tauto]
radd_term_term [lemma, in Coq.micromega.Tauto]
radd_term [definition, in Coq.micromega.Tauto]
radd:290 [binder, in Coq.setoid_ring.Ring_theory]
radd:443 [binder, in Coq.setoid_ring.Field_theory]
rad_deg [lemma, in Coq.Reals.Rtrigo_calc]
Ranalysis [library]
Ranalysis_reg [library]
Ranalysis1 [library]
Ranalysis2 [library]
Ranalysis3 [library]
Ranalysis4 [library]
Ranalysis5 [library]
Rappart_repr [lemma, in Coq.Reals.Raxioms]
Rarchimedean [lemma, in Coq.Reals.ClassicalConstructiveReals]
Ratan [library]
Ratan_is_ps_atan [lemma, in Coq.Reals.Ratan]
Ratan_CVU [lemma, in Coq.Reals.Ratan]
Ratan_CVU' [lemma, in Coq.Reals.Ratan]
Ratan_seq_opp [lemma, in Coq.Reals.Ratan]
Ratan_seq_converging [lemma, in Coq.Reals.Ratan]
Ratan_seq_decreasing [lemma, in Coq.Reals.Ratan]
Ratan_seq [definition, in Coq.Reals.Ratan]
ratom [definition, in Coq.micromega.Tauto]
ratom_cnf [lemma, in Coq.micromega.Tauto]
RatProof [constructor, in Coq.micromega.ZMicromega]
Raw [module, in Coq.Strings.OctalString]
Raw [module, in Coq.Strings.HexString]
Raw [module, in Coq.FSets.FMapAVL]
Raw [module, in Coq.Strings.BinaryString]
Raw [module, in Coq.FSets.FMapWeakList]
Raw [module, in Coq.FSets.FMapList]
RawSets [module, in Coq.MSets.MSetInterface]
RawSets.choose_spec3 [axiom, in Coq.MSets.MSetInterface]
RawSets.compare_spec [axiom, in Coq.MSets.MSetInterface]
RawSets.elements_spec2 [axiom, in Coq.MSets.MSetInterface]
RawSets.max_elt_spec3 [axiom, in Coq.MSets.MSetInterface]
RawSets.max_elt_spec2 [axiom, in Coq.MSets.MSetInterface]
RawSets.max_elt_spec1 [axiom, in Coq.MSets.MSetInterface]
RawSets.min_elt_spec3 [axiom, in Coq.MSets.MSetInterface]
RawSets.min_elt_spec2 [axiom, in Coq.MSets.MSetInterface]
RawSets.min_elt_spec1 [axiom, in Coq.MSets.MSetInterface]
RawSets.Spec [section, in Coq.MSets.MSetInterface]
RawSets.Spec.s [variable, in Coq.MSets.MSetInterface]
RawSets.Spec.s' [variable, in Coq.MSets.MSetInterface]
RawSets.Spec.x [variable, in Coq.MSets.MSetInterface]
RawSets.Spec.y [variable, in Coq.MSets.MSetInterface]
Raw.add [definition, in Coq.FSets.FMapAVL]
Raw.add_not_eq [lemma, in Coq.FSets.FMapWeakList]
Raw.add_eq [lemma, in Coq.FSets.FMapWeakList]
Raw.add_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.add_3' [lemma, in Coq.FSets.FMapWeakList]
Raw.add_3 [lemma, in Coq.FSets.FMapWeakList]
Raw.add_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.add_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.add_sorted [lemma, in Coq.FSets.FMapList]
Raw.add_Inf [lemma, in Coq.FSets.FMapList]
Raw.add_3 [lemma, in Coq.FSets.FMapList]
Raw.add_2 [lemma, in Coq.FSets.FMapList]
Raw.add_1 [lemma, in Coq.FSets.FMapList]
Raw.assert_false [definition, in Coq.FSets.FMapAVL]
Raw.at_least_one_then_f [definition, in Coq.FSets.FMapWeakList]
Raw.at_least_one [definition, in Coq.FSets.FMapWeakList]
Raw.at_least_right [definition, in Coq.FSets.FMapWeakList]
Raw.at_least_left [definition, in Coq.FSets.FMapWeakList]
Raw.at_least_one_then_f [definition, in Coq.FSets.FMapList]
Raw.at_least_one [definition, in Coq.FSets.FMapList]
Raw.bal [definition, in Coq.FSets.FMapAVL]
Raw.BSLeaf [constructor, in Coq.FSets.FMapAVL]
Raw.BSNode [constructor, in Coq.FSets.FMapAVL]
Raw.bst [inductive, in Coq.FSets.FMapAVL]
Raw.cardinal [definition, in Coq.FSets.FMapAVL]
Raw.check [definition, in Coq.FSets.FMapWeakList]
Raw.combine [definition, in Coq.FSets.FMapWeakList]
Raw.combine [definition, in Coq.FSets.FMapList]
Raw.combine_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.combine_r_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.combine_l_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.combine_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.combine_r [definition, in Coq.FSets.FMapWeakList]
Raw.combine_l [definition, in Coq.FSets.FMapWeakList]
Raw.combine_1 [lemma, in Coq.FSets.FMapList]
Raw.combine_sorted [lemma, in Coq.FSets.FMapList]
Raw.combine_lelistA [lemma, in Coq.FSets.FMapList]
Raw.concat [definition, in Coq.FSets.FMapAVL]
Raw.cons [definition, in Coq.FSets.FMapAVL]
Raw.create [definition, in Coq.FSets.FMapAVL]
Raw.elements [definition, in Coq.FSets.FMapAVL]
Raw.elements [definition, in Coq.FSets.FMapWeakList]
Raw.elements [definition, in Coq.FSets.FMapList]
Raw.elements_aux [definition, in Coq.FSets.FMapAVL]
Raw.elements_3w [lemma, in Coq.FSets.FMapWeakList]
Raw.elements_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.elements_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.elements_3w [lemma, in Coq.FSets.FMapList]
Raw.elements_3 [lemma, in Coq.FSets.FMapList]
Raw.elements_2 [lemma, in Coq.FSets.FMapList]
Raw.elements_1 [lemma, in Coq.FSets.FMapList]
Raw.Elt [section, in Coq.FSets.FMapAVL]
Raw.Elt [section, in Coq.FSets.FMapWeakList]
Raw.Elt [section, in Coq.FSets.FMapList]
Raw.Elt.cmp [variable, in Coq.FSets.FMapAVL]
Raw.Elt.elt [variable, in Coq.FSets.FMapAVL]
Raw.Elt.elt [variable, in Coq.FSets.FMapWeakList]
Raw.Elt.elt [variable, in Coq.FSets.FMapList]
Raw.Elt.elt' [variable, in Coq.FSets.FMapWeakList]
Raw.Elt.elt' [variable, in Coq.FSets.FMapList]
<< _ , _ , _ >> [notation, in Coq.FSets.FMapAVL]
Raw.Elt2 [section, in Coq.FSets.FMapWeakList]
Raw.Elt2 [section, in Coq.FSets.FMapList]
Raw.Elt2.elt [variable, in Coq.FSets.FMapWeakList]
Raw.Elt2.elt [variable, in Coq.FSets.FMapList]
Raw.Elt2.elt' [variable, in Coq.FSets.FMapWeakList]
Raw.Elt2.elt' [variable, in Coq.FSets.FMapList]
Raw.Elt3 [section, in Coq.FSets.FMapWeakList]
Raw.Elt3 [section, in Coq.FSets.FMapList]
Raw.Elt3.elt [variable, in Coq.FSets.FMapWeakList]
Raw.Elt3.elt [variable, in Coq.FSets.FMapList]
Raw.Elt3.elt' [variable, in Coq.FSets.FMapWeakList]
Raw.Elt3.elt' [variable, in Coq.FSets.FMapList]
Raw.Elt3.elt'' [variable, in Coq.FSets.FMapWeakList]
Raw.Elt3.elt'' [variable, in Coq.FSets.FMapList]
Raw.Elt3.f [variable, in Coq.FSets.FMapWeakList]
Raw.Elt3.f [variable, in Coq.FSets.FMapList]
Raw.empty [definition, in Coq.FSets.FMapAVL]
Raw.Empty [definition, in Coq.FSets.FMapWeakList]
Raw.empty [definition, in Coq.FSets.FMapWeakList]
Raw.Empty [definition, in Coq.FSets.FMapList]
Raw.empty [definition, in Coq.FSets.FMapList]
Raw.empty_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.empty_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.empty_sorted [lemma, in Coq.FSets.FMapList]
Raw.empty_1 [lemma, in Coq.FSets.FMapList]
Raw.End [constructor, in Coq.FSets.FMapAVL]
Raw.enumeration [inductive, in Coq.FSets.FMapAVL]
Raw.eqk [abbreviation, in Coq.FSets.FMapWeakList]
Raw.eqk [abbreviation, in Coq.FSets.FMapList]
Raw.eqke [abbreviation, in Coq.FSets.FMapWeakList]
Raw.eqke [abbreviation, in Coq.FSets.FMapList]
Raw.equal [definition, in Coq.FSets.FMapAVL]
Raw.equal [definition, in Coq.FSets.FMapWeakList]
Raw.equal_end [definition, in Coq.FSets.FMapAVL]
Raw.equal_cont [definition, in Coq.FSets.FMapAVL]
Raw.equal_more [definition, in Coq.FSets.FMapAVL]
Raw.equal_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.equal_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.equal_cons [lemma, in Coq.FSets.FMapList]
Raw.equal_2 [lemma, in Coq.FSets.FMapList]
Raw.equal_1 [lemma, in Coq.FSets.FMapList]
Raw.Equivb [definition, in Coq.FSets.FMapWeakList]
Raw.Equivb [definition, in Coq.FSets.FMapList]
Raw.find [definition, in Coq.FSets.FMapAVL]
Raw.find_eq [lemma, in Coq.FSets.FMapWeakList]
Raw.find_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.find_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.find_1 [lemma, in Coq.FSets.FMapList]
Raw.find_2 [lemma, in Coq.FSets.FMapList]
Raw.fold [definition, in Coq.FSets.FMapAVL]
Raw.fold_right_pair_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.fold_right_pair [definition, in Coq.FSets.FMapWeakList]
Raw.fold_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.fold_right_pair [definition, in Coq.FSets.FMapList]
Raw.fold_1 [lemma, in Coq.FSets.FMapList]
Raw.gt_tree [definition, in Coq.FSets.FMapAVL]
Raw.height [definition, in Coq.FSets.FMapAVL]
Raw.In [inductive, in Coq.FSets.FMapAVL]
Raw.In [abbreviation, in Coq.FSets.FMapWeakList]
Raw.In [abbreviation, in Coq.FSets.FMapList]
Raw.Inf [abbreviation, in Coq.FSets.FMapList]
Raw.InLeft [constructor, in Coq.FSets.FMapAVL]
Raw.InRight [constructor, in Coq.FSets.FMapAVL]
Raw.InRoot [constructor, in Coq.FSets.FMapAVL]
Raw.int [abbreviation, in Coq.FSets.FMapAVL]
Raw.Invariants [section, in Coq.FSets.FMapAVL]
Raw.Invariants.elt [variable, in Coq.FSets.FMapAVL]
Raw.In0 [definition, in Coq.FSets.FMapAVL]
Raw.is_empty [definition, in Coq.FSets.FMapAVL]
Raw.is_empty_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.is_empty_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.is_empty [definition, in Coq.FSets.FMapWeakList]
Raw.is_empty_2 [lemma, in Coq.FSets.FMapList]
Raw.is_empty_1 [lemma, in Coq.FSets.FMapList]
Raw.is_empty [definition, in Coq.FSets.FMapList]
Raw.join [definition, in Coq.FSets.FMapAVL]
Raw.key [definition, in Coq.FSets.FMapAVL]
Raw.key [definition, in Coq.FSets.FMapWeakList]
Raw.key [definition, in Coq.FSets.FMapList]
Raw.Leaf [constructor, in Coq.FSets.FMapAVL]
Raw.ltk [abbreviation, in Coq.FSets.FMapList]
Raw.lt_tree [definition, in Coq.FSets.FMapAVL]
Raw.map [definition, in Coq.FSets.FMapAVL]
Raw.map [definition, in Coq.FSets.FMapWeakList]
Raw.map [definition, in Coq.FSets.FMapList]
Raw.mapi [definition, in Coq.FSets.FMapAVL]
Raw.mapi [definition, in Coq.FSets.FMapWeakList]
Raw.mapi [definition, in Coq.FSets.FMapList]
Raw.mapi_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.mapi_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.mapi_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.mapi_sorted [lemma, in Coq.FSets.FMapList]
Raw.mapi_lelistA [lemma, in Coq.FSets.FMapList]
Raw.mapi_2 [lemma, in Coq.FSets.FMapList]
Raw.mapi_1 [lemma, in Coq.FSets.FMapList]
Raw.MapsLeft [constructor, in Coq.FSets.FMapAVL]
Raw.MapsRight [constructor, in Coq.FSets.FMapAVL]
Raw.MapsRoot [constructor, in Coq.FSets.FMapAVL]
Raw.MapsTo [inductive, in Coq.FSets.FMapAVL]
Raw.MapsTo [abbreviation, in Coq.FSets.FMapWeakList]
Raw.MapsTo [abbreviation, in Coq.FSets.FMapList]
Raw.map_option [definition, in Coq.FSets.FMapAVL]
Raw.map_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.map_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.map_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.map_sorted [lemma, in Coq.FSets.FMapList]
Raw.map_lelistA [lemma, in Coq.FSets.FMapList]
Raw.map_2 [lemma, in Coq.FSets.FMapList]
Raw.map_1 [lemma, in Coq.FSets.FMapList]
Raw.map2 [definition, in Coq.FSets.FMapAVL]
Raw.Map2 [section, in Coq.FSets.FMapAVL]
Raw.map2 [definition, in Coq.FSets.FMapWeakList]
Raw.map2 [definition, in Coq.FSets.FMapList]
Raw.map2_opt [definition, in Coq.FSets.FMapAVL]
Raw.Map2_opt.mapr [variable, in Coq.FSets.FMapAVL]
Raw.Map2_opt.mapl [variable, in Coq.FSets.FMapAVL]
Raw.Map2_opt.f [variable, in Coq.FSets.FMapAVL]
Raw.Map2_opt.elt'' [variable, in Coq.FSets.FMapAVL]
Raw.Map2_opt.elt' [variable, in Coq.FSets.FMapAVL]
Raw.Map2_opt.elt [variable, in Coq.FSets.FMapAVL]
Raw.Map2_opt [section, in Coq.FSets.FMapAVL]
Raw.map2_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.map2_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.map2_0 [lemma, in Coq.FSets.FMapWeakList]
Raw.map2_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.map2_2 [lemma, in Coq.FSets.FMapList]
Raw.map2_1 [lemma, in Coq.FSets.FMapList]
Raw.map2_0 [lemma, in Coq.FSets.FMapList]
Raw.map2_sorted [lemma, in Coq.FSets.FMapList]
Raw.map2_alt_equiv [lemma, in Coq.FSets.FMapList]
Raw.map2_alt [definition, in Coq.FSets.FMapList]
Raw.map2_r [definition, in Coq.FSets.FMapList]
Raw.map2_l [definition, in Coq.FSets.FMapList]
Raw.Map2.elt [variable, in Coq.FSets.FMapAVL]
Raw.Map2.elt' [variable, in Coq.FSets.FMapAVL]
Raw.Map2.elt'' [variable, in Coq.FSets.FMapAVL]
Raw.Map2.f [variable, in Coq.FSets.FMapAVL]
Raw.mem [definition, in Coq.FSets.FMapAVL]
Raw.mem_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.mem_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.mem_2 [lemma, in Coq.FSets.FMapList]
Raw.mem_1 [lemma, in Coq.FSets.FMapList]
Raw.merge [definition, in Coq.FSets.FMapAVL]
Raw.More [constructor, in Coq.FSets.FMapAVL]
Raw.MX [module, in Coq.FSets.FMapList]
Raw.Node [constructor, in Coq.FSets.FMapAVL]
Raw.NoDupA [abbreviation, in Coq.FSets.FMapWeakList]
Raw.oee' [abbreviation, in Coq.FSets.FMapWeakList]
Raw.oee' [abbreviation, in Coq.FSets.FMapList]
Raw.of_pos [definition, in Coq.Strings.OctalString]
Raw.of_pos [definition, in Coq.Strings.HexString]
Raw.of_pos [definition, in Coq.Strings.BinaryString]
Raw.option_cons [definition, in Coq.FSets.FMapWeakList]
Raw.option_cons [definition, in Coq.FSets.FMapList]
Raw.Proofs [module, in Coq.FSets.FMapAVL]
Raw.Proofs.add_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.add_3 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.add_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.add_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.add_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.add_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.bal_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.bal_mapsto [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.bal_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.bal_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.concat_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.concat_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.concat_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.cons_IfEq [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.cons_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.create_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.create_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_node [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_app [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_cardinal [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_aux_cardinal [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_nodup [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_sort [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_aux_sort [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_mapsto [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.elements_aux_mapsto [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.Elt [section, in Coq.FSets.FMapAVL]
Raw.Proofs.Elt.cmp [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Elt.elt [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Empty [definition, in Coq.FSets.FMapAVL]
Raw.Proofs.empty_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.empty_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.eqk [abbreviation, in Coq.FSets.FMapAVL]
Raw.Proofs.eqke [abbreviation, in Coq.FSets.FMapAVL]
Raw.Proofs.equal_Equivb [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.equal_IfEq [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.equal_cont_IfEq [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.equal_more_IfEq [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.equal_end_IfEq [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.Equivb [definition, in Coq.FSets.FMapAVL]
Raw.Proofs.Equivb_elements [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_in_equiv [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_mapsto_equiv [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_in_iff [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_iff [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.find_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.flatten_e_elements [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.flatten_e [definition, in Coq.FSets.FMapAVL]
Raw.Proofs.fold_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.fold_equiv [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.fold_equiv_aux [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.fold' [definition, in Coq.FSets.FMapAVL]
Raw.Proofs.gt_tree_trans [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.gt_tree_not_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.gt_right [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.gt_left [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.gt_tree_node [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.gt_leaf [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.IfEq [definition, in Coq.FSets.FMapAVL]
Raw.Proofs.in_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.In_node_iff [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.In_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.In_alt [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.In_MapsTo [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.is_empty_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.is_empty_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.join_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.join_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.join_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.L [module, in Coq.FSets.FMapAVL]
Raw.Proofs.ltk [abbreviation, in Coq.FSets.FMapAVL]
Raw.Proofs.lt_tree_trans [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.lt_tree_not_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.lt_right [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.lt_left [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.lt_tree_node [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.lt_leaf [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.Map [section, in Coq.FSets.FMapAVL]
Raw.Proofs.Mapi [section, in Coq.FSets.FMapAVL]
Raw.Proofs.mapi_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.mapi_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.mapi_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.Mapi.elt [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Mapi.elt' [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Mapi.f [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.MapsTo_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.MapsTo_In [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map_option_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map_option_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map_option_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.Map_option.f_compat [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map_option.f [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map_option.elt' [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map_option.elt [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map_option [section, in Coq.FSets.FMapAVL]
Raw.Proofs.map_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.Map.elt [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map.elt' [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map.f [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2 [section, in Coq.FSets.FMapAVL]
Raw.Proofs.map2_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map2_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map2_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map2_opt_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map2_opt_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map2_opt_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.map2_opt [abbreviation, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.f0_compat [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.mapr_f0 [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.mapl_f0 [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.mapr_bst [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.mapl_bst [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.f0_f [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.mapr [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.mapl [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.f [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.f0 [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.elt'' [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.elt' [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt.elt [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2_opt [section, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2.elt [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2.elt' [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2.elt'' [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.Map2.f [variable, in Coq.FSets.FMapAVL]
Raw.Proofs.mem_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.mem_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.merge_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.merge_mapsto [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.merge_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.MX [module, in Coq.FSets.FMapAVL]
Raw.Proofs.not_find_iff [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.PX [module, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_3 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_1 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_min_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_min_gt_tree [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_min_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_min_mapsto [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.remove_min_in [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.split_find [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.split_gt_tree [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.split_lt_tree [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.split_bst [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.split_in_3 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.split_in_2 [lemma, in Coq.FSets.FMapAVL]
Raw.Proofs.split_in_1 [lemma, in Coq.FSets.FMapAVL]
Raw.PX [module, in Coq.FSets.FMapWeakList]
Raw.PX [module, in Coq.FSets.FMapList]
Raw.remove [definition, in Coq.FSets.FMapAVL]
Raw.remove_min [definition, in Coq.FSets.FMapAVL]
Raw.remove_NoDup [lemma, in Coq.FSets.FMapWeakList]
Raw.remove_3' [lemma, in Coq.FSets.FMapWeakList]
Raw.remove_3 [lemma, in Coq.FSets.FMapWeakList]
Raw.remove_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.remove_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.remove_sorted [lemma, in Coq.FSets.FMapList]
Raw.remove_Inf [lemma, in Coq.FSets.FMapList]
Raw.remove_3 [lemma, in Coq.FSets.FMapList]
Raw.remove_2 [lemma, in Coq.FSets.FMapList]
Raw.remove_1 [lemma, in Coq.FSets.FMapList]
Raw.Sort [abbreviation, in Coq.FSets.FMapList]
Raw.split [definition, in Coq.FSets.FMapAVL]
Raw.Submap [definition, in Coq.FSets.FMapWeakList]
Raw.submap [definition, in Coq.FSets.FMapWeakList]
Raw.submap_2 [lemma, in Coq.FSets.FMapWeakList]
Raw.submap_1 [lemma, in Coq.FSets.FMapWeakList]
Raw.t [abbreviation, in Coq.FSets.FMapAVL]
Raw.t [abbreviation, in Coq.FSets.FMapAVL]
Raw.t [definition, in Coq.FSets.FMapWeakList]
Raw.t [definition, in Coq.FSets.FMapList]
Raw.to_N_of_pos [definition, in Coq.Strings.OctalString]
Raw.to_N [definition, in Coq.Strings.OctalString]
Raw.to_N_of_pos [definition, in Coq.Strings.HexString]
Raw.to_N [definition, in Coq.Strings.HexString]
Raw.to_N_of_pos [definition, in Coq.Strings.BinaryString]
Raw.to_N [definition, in Coq.Strings.BinaryString]
Raw.tree [inductive, in Coq.FSets.FMapAVL]
Raw.triple [record, in Coq.FSets.FMapAVL]
Raw.t_right [projection, in Coq.FSets.FMapAVL]
Raw.t_opt [projection, in Coq.FSets.FMapAVL]
Raw.t_left [projection, in Coq.FSets.FMapAVL]
_ #r [notation, in Coq.FSets.FMapAVL]
_ #o [notation, in Coq.FSets.FMapAVL]
_ #l [notation, in Coq.FSets.FMapAVL]
<< _ , _ , _ >> [notation, in Coq.FSets.FMapAVL]
Raw2Sets [module, in Coq.MSets.MSetInterface]
Raw2SetsOn [module, in Coq.MSets.MSetInterface]
Raw2SetsOn.choose_spec3 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.compare [definition, in Coq.MSets.MSetInterface]
Raw2SetsOn.compare_spec [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.elements_spec2 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.lt [definition, in Coq.MSets.MSetInterface]
Raw2SetsOn.lt_compat [instance, in Coq.MSets.MSetInterface]
Raw2SetsOn.lt_strorder [instance, in Coq.MSets.MSetInterface]
Raw2SetsOn.max_elt_spec3 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.max_elt_spec2 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.max_elt_spec1 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.max_elt [definition, in Coq.MSets.MSetInterface]
Raw2SetsOn.min_elt_spec3 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.min_elt_spec2 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.min_elt_spec1 [lemma, in Coq.MSets.MSetInterface]
Raw2SetsOn.min_elt [definition, in Coq.MSets.MSetInterface]
Raw2SetsOn.Spec [section, in Coq.MSets.MSetInterface]
Raw2SetsOn.Spec.s [variable, in Coq.MSets.MSetInterface]
Raw2SetsOn.Spec.s' [variable, in Coq.MSets.MSetInterface]
Raw2SetsOn.Spec.s'' [variable, in Coq.MSets.MSetInterface]
Raw2SetsOn.Spec.x [variable, in Coq.MSets.MSetInterface]
Raw2SetsOn.Spec.y [variable, in Coq.MSets.MSetInterface]
Raw2Sets.E [module, in Coq.MSets.MSetInterface]
Raxioms [library]
RA':52 [binder, in Coq.Classes.CMorphisms]
RA':54 [binder, in Coq.Classes.CMorphisms]
RA':70 [binder, in Coq.Classes.Morphisms]
RA':72 [binder, in Coq.Classes.Morphisms]
RA:101 [binder, in Coq.Classes.Morphisms]
RA:104 [binder, in Coq.Classes.Morphisms]
RA:105 [binder, in Coq.Classes.RelationClasses]
RA:114 [binder, in Coq.Classes.CRelationClasses]
RA:128 [binder, in Coq.Classes.CMorphisms]
RA:132 [binder, in Coq.Classes.Morphisms]
RA:17 [binder, in Coq.Classes.RelationPairs]
RA:42 [binder, in Coq.Classes.RelationPairs]
RA:51 [binder, in Coq.Classes.CMorphisms]
RA:55 [binder, in Coq.Classes.CMorphisms]
RA:69 [binder, in Coq.Classes.Morphisms]
RA:73 [binder, in Coq.Classes.Morphisms]
RA:88 [binder, in Coq.Classes.CMorphisms]
Rbase [library]
RbaseSymbolsImpl [module, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.R [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rabst [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rlt [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rlt_def [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rmult [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rmult_def [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Ropp [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Ropp_def [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rplus [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rplus_def [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rquot1 [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rquot2 [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.Rrepr [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.R0 [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.R0_def [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.R1 [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsImpl.R1_def [definition, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig [module, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.R [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rabst [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rlt [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rlt_def [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rmult [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rmult_def [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Ropp [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Ropp_def [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rplus [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rplus_def [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rquot1 [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rquot2 [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.Rrepr [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.R0 [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.R0_def [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.R1 [axiom, in Coq.Reals.Rdefinitions]
RbaseSymbolsSig.R1_def [axiom, in Coq.Reals.Rdefinitions]
Rbasic_fun [library]
RB':59 [binder, in Coq.Classes.CMorphisms]
RB':76 [binder, in Coq.Classes.Morphisms]
RB:105 [binder, in Coq.Classes.Morphisms]
RB:129 [binder, in Coq.Classes.CMorphisms]
RB:133 [binder, in Coq.Classes.Morphisms]
RB:18 [binder, in Coq.Classes.RelationPairs]
RB:43 [binder, in Coq.Classes.RelationPairs]
RB:58 [binder, in Coq.Classes.CMorphisms]
RB:75 [binder, in Coq.Classes.Morphisms]
RB:89 [binder, in Coq.Classes.CMorphisms]
Rcase_abs [lemma, in Coq.Reals.Rbasic_fun]
Rcauchy_complete [lemma, in Coq.Reals.Cauchy.ConstructiveRcomplete]
Rcauchy_limit [lemma, in Coq.Reals.Cauchy.ConstructiveRcomplete]
Rcompare [definition, in Coq.Reals.ROrderedType]
Rcompare_spec [lemma, in Coq.Reals.ROrderedType]
Rcomplete [lemma, in Coq.Reals.ClassicalConstructiveReals]
Rcomplete [library]
Rcontinuity_abs [lemma, in Coq.Reals.Ranalysis4]
Rcri [instance, in Coq.setoid_ring.Rings_R]
Rcri [instance, in Coq.nsatz.Nsatz]
Rcr:11 [binder, in Coq.setoid_ring.Integral_domain]
Rcst [inductive, in Coq.micromega.RMicromega]
Rcv_cauchy_mod [lemma, in Coq.Reals.Abstract.ConstructiveLimits]
RC:106 [binder, in Coq.Classes.Morphisms]
RC:130 [binder, in Coq.Classes.CMorphisms]
RC:134 [binder, in Coq.Classes.Morphisms]
RC:90 [binder, in Coq.Classes.CMorphisms]
rdeduce [definition, in Coq.micromega.RMicromega]
Rdefinitions [library]
Rdef_pow_add [lemma, in Coq.setoid_ring.RealField]
Rderiv [library]
Rderivable_pt_abs [lemma, in Coq.Reals.Ranalysis4]
Rdi [instance, in Coq.setoid_ring.Rings_R]
Rdi [instance, in Coq.nsatz.Nsatz]
Rdichotomy [lemma, in Coq.Reals.RIneq]
RdisjunctEpsilon [lemma, in Coq.Reals.ClassicalConstructiveReals]
Rdistr_l [projection, in Coq.setoid_ring.Ring_theory]
Rdiv [definition, in Coq.Reals.Rdefinitions]
rdiv_r_r [lemma, in Coq.setoid_ring.Field_theory]
rdiv_ext [instance, in Coq.setoid_ring.Field_theory]
rdiv_simpl [lemma, in Coq.setoid_ring.Field_theory]
Rdiv_minus_distr [lemma, in Coq.Reals.RIneq]
Rdiv_plus_distr [lemma, in Coq.Reals.RIneq]
Rdiv_lt_0_compat [lemma, in Coq.Reals.RIneq]
Rdiv_opp_r [lemma, in Coq.Reals.RIneq]
rdiv1 [lemma, in Coq.setoid_ring.Field_theory]
rdiv2 [lemma, in Coq.setoid_ring.Field_theory]
rdiv2b [lemma, in Coq.setoid_ring.Field_theory]
rdiv3b [lemma, in Coq.setoid_ring.Field_theory]
rdiv4 [lemma, in Coq.setoid_ring.Field_theory]
rdiv4b [lemma, in Coq.setoid_ring.Field_theory]
rdiv5 [lemma, in Coq.setoid_ring.Field_theory]
rdiv6 [lemma, in Coq.setoid_ring.Field_theory]
rdiv7 [lemma, in Coq.setoid_ring.Field_theory]
rdiv7b [lemma, in Coq.setoid_ring.Field_theory]
rdiv8 [lemma, in Coq.setoid_ring.Field_theory]
rdiv:445 [binder, in Coq.setoid_ring.Field_theory]
RealField [library]
Reals [library]
Recdef [library]
recl [definition, in Coq.Numbers.Cyclic.Int31.Int31]
recl_aux [definition, in Coq.Numbers.Cyclic.Int31.Int31]
recr [definition, in Coq.Numbers.Cyclic.Int31.Int31]
recrbis [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
recrbis_equiv [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
recrbis_aux_equiv [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
recrbis_aux [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
recr_eqn [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
recr_aux_converges [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
recr_aux_eqn [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
recr_aux [definition, in Coq.Numbers.Cyclic.Int31.Int31]
rectS [definition, in Coq.Vectors.Fin]
rectS [definition, in Coq.Vectors.VectorDef]
rect2 [definition, in Coq.Vectors.Fin]
rect2 [definition, in Coq.Vectors.VectorDef]
rect:14 [binder, in Coq.Vectors.VectorDef]
rect:60 [binder, in Coq.Vectors.VectorDef]
rec:112 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:120 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
rec:125 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
rec:133 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
rec:140 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
rec:159 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:164 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:165 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
rec:171 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
rec:174 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:180 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:305 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:310 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:315 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:320 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:331 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:337 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:383 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:388 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:394 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:40 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
rec:411 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:417 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rec:66 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
rec:92 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
Red [constructor, in Coq.MSets.MSetRBT]
Reduce [section, in Coq.btauto.Algebra]
reduce [definition, in Coq.btauto.Algebra]
reduce_aux_le_compat [lemma, in Coq.btauto.Algebra]
reduce_eval_compat [lemma, in Coq.btauto.Algebra]
reduce_aux_eval_compat [lemma, in Coq.btauto.Algebra]
reduce_aux [definition, in Coq.btauto.Algebra]
reduce_poly_of_formula_sound_alt [lemma, in Coq.btauto.Reflect]
reduce_poly_of_formula_sound [lemma, in Coq.btauto.Reflect]
ReDun [section, in Coq.Lists.List]
ReDun.A [variable, in Coq.Lists.List]
ReDun.decA [variable, in Coq.Lists.List]
Refl [library]
reflb:36 [binder, in Coq.Classes.CEquivalence]
reflb:36 [binder, in Coq.Classes.Equivalence]
Reflect [section, in Coq.ssr.ssrbool]
reflect [abbreviation, in Coq.ssr.ssrbool]
reflect [inductive, in Coq.Bool.Bool]
Reflect [lemma, in Coq.rtauto.Rtauto]
Reflect [library]
ReflectCombinators [section, in Coq.ssr.ssrbool]
ReflectCombinators.p [variable, in Coq.ssr.ssrbool]
ReflectCombinators.P [variable, in Coq.ssr.ssrbool]
ReflectCombinators.q [variable, in Coq.ssr.ssrbool]
ReflectCombinators.Q [variable, in Coq.ssr.ssrbool]
ReflectCombinators.rP [variable, in Coq.ssr.ssrbool]
ReflectCombinators.rQ [variable, in Coq.ssr.ssrbool]
ReflectConnectives [section, in Coq.ssr.ssrbool]
ReflectConnectives.b1 [variable, in Coq.ssr.ssrbool]
ReflectConnectives.b2 [variable, in Coq.ssr.ssrbool]
ReflectConnectives.b3 [variable, in Coq.ssr.ssrbool]
ReflectConnectives.b4 [variable, in Coq.ssr.ssrbool]
ReflectConnectives.b5 [variable, in Coq.ssr.ssrbool]
ReflectCore [section, in Coq.ssr.ssrbool]
ReflectCore.b [variable, in Coq.ssr.ssrbool]
ReflectCore.c [variable, in Coq.ssr.ssrbool]
ReflectCore.Hb [variable, in Coq.ssr.ssrbool]
ReflectCore.P [variable, in Coq.ssr.ssrbool]
ReflectCore.Q [variable, in Coq.ssr.ssrbool]
ReflectF [abbreviation, in Coq.ssr.ssrbool]
ReflectF [constructor, in Coq.Bool.Bool]
ReflectNegCore [section, in Coq.ssr.ssrbool]
ReflectNegCore.b [variable, in Coq.ssr.ssrbool]
ReflectNegCore.c [variable, in Coq.ssr.ssrbool]
ReflectNegCore.Hb [variable, in Coq.ssr.ssrbool]
ReflectNegCore.P [variable, in Coq.ssr.ssrbool]
ReflectNegCore.Q [variable, in Coq.ssr.ssrbool]
ReflectT [abbreviation, in Coq.ssr.ssrbool]
ReflectT [constructor, in Coq.Bool.Bool]
reflect_dec [lemma, in Coq.Bool.Bool]
reflect_iff [lemma, in Coq.Bool.Bool]
Reflect.b [variable, in Coq.ssr.ssrbool]
Reflect.b' [variable, in Coq.ssr.ssrbool]
Reflect.c [variable, in Coq.ssr.ssrbool]
Reflect.P [variable, in Coq.ssr.ssrbool]
Reflect.Pb [variable, in Coq.ssr.ssrbool]
Reflect.Pb' [variable, in Coq.ssr.ssrbool]
Reflect.Q [variable, in Coq.ssr.ssrbool]
Reflexive [record, in Coq.Classes.RelationClasses]
Reflexive [inductive, in Coq.Classes.RelationClasses]
reflexive [definition, in Coq.ssr.ssrbool]
Reflexive [record, in Coq.ssr.ssrclasses]
Reflexive [inductive, in Coq.ssr.ssrclasses]
Reflexive [record, in Coq.Classes.CRelationClasses]
Reflexive [inductive, in Coq.Classes.CRelationClasses]
Reflexive [definition, in Coq.Sets.Relations_1]
reflexive [definition, in Coq.Relations.Relation_Definitions]
ReflexiveProxy [record, in Coq.Classes.Morphisms]
ReflexiveProxy [inductive, in Coq.Classes.Morphisms]
Reflexive_partial_app_morphism [lemma, in Coq.Classes.Morphisms]
reflexive_eq_dom_reflexive [instance, in Coq.Classes.Morphisms]
reflexive_reflexive_proxy [lemma, in Coq.Classes.Morphisms]
reflexive_proper_proxy [lemma, in Coq.Classes.Morphisms]
reflexive_proper [lemma, in Coq.Classes.Morphisms]
reflexive_proxy [projection, in Coq.Classes.Morphisms]
reflexive_proxy [constructor, in Coq.Classes.Morphisms]
reflexive_proper [lemma, in Coq.Classes.CMorphisms]
Reflexive_partial_app_morphism [lemma, in Coq.Classes.CMorphisms]
reflexive_eq_dom_reflexive [instance, in Coq.Classes.CMorphisms]
reflexive_proper_proxy [lemma, in Coq.Classes.CMorphisms]
Reflexive_Symmetric_Transitive_Closure.R [variable, in Coq.Relations.Relation_Operators]
Reflexive_Symmetric_Transitive_Closure.A [variable, in Coq.Relations.Relation_Operators]
Reflexive_Symmetric_Transitive_Closure [section, in Coq.Relations.Relation_Operators]
Reflexive_Transitive_Closure.R [variable, in Coq.Relations.Relation_Operators]
Reflexive_Transitive_Closure.A [variable, in Coq.Relations.Relation_Operators]
Reflexive_Transitive_Closure [section, in Coq.Relations.Relation_Operators]
Reflexive_Closure.R [variable, in Coq.Relations.Relation_Operators]
Reflexive_Closure.A [variable, in Coq.Relations.Relation_Operators]
Reflexive_Closure [section, in Coq.Relations.Relation_Operators]
reflexivity [projection, in Coq.Classes.RelationClasses]
reflexivity [constructor, in Coq.Classes.RelationClasses]
reflexivity [projection, in Coq.ssr.ssrclasses]
reflexivity [constructor, in Coq.ssr.ssrclasses]
reflexivity [projection, in Coq.Classes.CRelationClasses]
reflexivity [constructor, in Coq.Classes.CRelationClasses]
refl_id [abbreviation, in Coq.Init.Datatypes]
refl_equal [abbreviation, in Coq.Init.Logic]
RefutablePropositionExtensionality [abbreviation, in Coq.Logic.PropExtensionalityFacts]
registered_applicative_pred [record, in Coq.ssr.ssrbool]
reify [record, in Coq.setoid_ring.Ncring_tac]
reifylist [record, in Coq.setoid_ring.Ncring_tac]
reifyZneg [instance, in Coq.setoid_ring.Ncring_tac]
reifyZpos [instance, in Coq.setoid_ring.Ncring_tac]
reifyZ0 [instance, in Coq.setoid_ring.Ncring_tac]
reify_cons [instance, in Coq.setoid_ring.Ncring_tac]
reify_nil [instance, in Coq.setoid_ring.Ncring_tac]
reify_var [instance, in Coq.setoid_ring.Ncring_tac]
reify_pow [instance, in Coq.setoid_ring.Ncring_tac]
reify_opp [instance, in Coq.setoid_ring.Ncring_tac]
reify_sub [instance, in Coq.setoid_ring.Ncring_tac]
reify_mul_ext [instance, in Coq.setoid_ring.Ncring_tac]
reify_mul [instance, in Coq.setoid_ring.Ncring_tac]
reify_add [instance, in Coq.setoid_ring.Ncring_tac]
reify_one [instance, in Coq.setoid_ring.Ncring_tac]
reify_zero [instance, in Coq.setoid_ring.Ncring_tac]
reify_IZR [instance, in Coq.nsatz.Nsatz]
rel [definition, in Coq.ssr.ssrbool]
Rel [definition, in Coq.Sets.Partial_Order]
Relation [definition, in Coq.Sets.Relations_1]
relation [definition, in Coq.Relations.Relation_Definitions]
RelationalChoice [abbreviation, in Coq.Logic.ChoiceFacts]
RelationalChoice [library]
RelationalChoice_on [definition, in Coq.Logic.ChoiceFacts]
relational_choice [axiom, in Coq.Logic.RelationalChoice]
RelationClasses [library]
RelationPairs [library]
RelationProperties [section, in Coq.ssr.ssrbool]
RelationProperties.PER [section, in Coq.ssr.ssrbool]
RelationProperties.PER.symR [variable, in Coq.ssr.ssrbool]
RelationProperties.PER.trR [variable, in Coq.ssr.ssrbool]
RelationProperties.R [variable, in Coq.ssr.ssrbool]
RelationProperties.T [variable, in Coq.ssr.ssrbool]
Relations [section, in Coq.Classes.Morphisms]
Relations [section, in Coq.Classes.CMorphisms]
Relations [library]
Relations_3.R [variable, in Coq.Sets.Relations_3]
Relations_3.U [variable, in Coq.Sets.Relations_3]
Relations_3 [section, in Coq.Sets.Relations_3]
Relations_2.R [variable, in Coq.Sets.Relations_2]
Relations_2.U [variable, in Coq.Sets.Relations_2]
Relations_2 [section, in Coq.Sets.Relations_2]
Relations_1.R [variable, in Coq.Sets.Relations_1]
Relations_1.U [variable, in Coq.Sets.Relations_1]
Relations_1 [section, in Coq.Sets.Relations_1]
Relations_3_facts [library]
Relations_3 [library]
Relations_2 [library]
Relations_1 [library]
Relations_1_facts [library]
Relations_2_facts [library]
Relations.U [variable, in Coq.Classes.Morphisms]
relation_implication_preorder [instance, in Coq.Classes.RelationClasses]
relation_equivalence_equivalence [instance, in Coq.Classes.RelationClasses]
relation_disjunction [definition, in Coq.Classes.RelationClasses]
relation_conjunction [definition, in Coq.Classes.RelationClasses]
relation_equivalence_rewrite_relation [instance, in Coq.Classes.RelationClasses]
relation_equivalence [definition, in Coq.Classes.RelationClasses]
relation_implication_preorder [instance, in Coq.Classes.CRelationClasses]
relation_equivalence_equivalence [instance, in Coq.Classes.CRelationClasses]
relation_disjunction [definition, in Coq.Classes.CRelationClasses]
relation_conjunction [definition, in Coq.Classes.CRelationClasses]
relation_equivalence [definition, in Coq.Classes.CRelationClasses]
Relation_Definition.Relations_of_Relations [section, in Coq.Relations.Relation_Definitions]
Relation_Definition.Sets_of_Relations [section, in Coq.Relations.Relation_Definitions]
Relation_Definition.General_Properties_of_Relations [section, in Coq.Relations.Relation_Definitions]
Relation_Definition.R [variable, in Coq.Relations.Relation_Definitions]
Relation_Definition.A [variable, in Coq.Relations.Relation_Definitions]
Relation_Definition [section, in Coq.Relations.Relation_Definitions]
relation_equivalence_pointwise [instance, in Coq.Classes.Morphisms_Relations]
relation_disjunction_morphism [instance, in Coq.Classes.Morphisms_Relations]
relation_conjunction_morphism [instance, in Coq.Classes.Morphisms_Relations]
Relation_Definitions [library]
Relation_Operators [library]
relative_non_contradiction_of_definite_descr [lemma, in Coq.Logic.ChoiceFacts]
relative_non_contradiction_of_indefinite_descr [lemma, in Coq.Logic.ChoiceFacts]
RelCompFun [definition, in Coq.Classes.RelationPairs]
RelCompFun_compat [instance, in Coq.Classes.RelationPairs]
RelCompFun_StrictOrder [instance, in Coq.Classes.RelationPairs]
RelCompFun_Equivalence [instance, in Coq.Classes.RelationPairs]
RelCompFun_Irreflexive [instance, in Coq.Classes.RelationPairs]
RelCompFun_Transitive [instance, in Coq.Classes.RelationPairs]
RelCompFun_Symmetric [instance, in Coq.Classes.RelationPairs]
RelCompFun_Reflexive [instance, in Coq.Classes.RelationPairs]
RelCompFun_Instances [section, in Coq.Classes.RelationPairs]
relpre [definition, in Coq.ssr.ssrbool]
RelProd [definition, in Coq.Classes.RelationPairs]
RelProd_Equivalence [instance, in Coq.Classes.RelationPairs]
RelProd_Transitive [instance, in Coq.Classes.RelationPairs]
RelProd_Symmetric [instance, in Coq.Classes.RelationPairs]
RelProd_Reflexive [instance, in Coq.Classes.RelationPairs]
RelProd_Instances [section, in Coq.Classes.RelationPairs]
relU [definition, in Coq.ssr.ssrbool]
rel_ls_lower_bound [lemma, in Coq.Logic.ConstructiveEpsilon]
rel_ls_post [lemma, in Coq.Logic.ConstructiveEpsilon]
rel_ls [inductive, in Coq.Logic.ConstructiveEpsilon]
rel_prime_Zpower [lemma, in Coq.ZArith.Zpow_facts]
rel_prime_Zpower_r [lemma, in Coq.ZArith.Zpow_facts]
rel_choice_indep_of_general_premises_imp_guarded_rel_choice [lemma, in Coq.Logic.ChoiceFacts]
rel_choice_and_proof_irrel_imp_guarded_rel_choice [lemma, in Coq.Logic.ChoiceFacts]
rel_of_simpl [definition, in Coq.ssr.ssrbool]
Rel_of [projection, in Coq.Sets.Partial_Order]
rel_prime_dec [definition, in Coq.ZArith.Znumtheory]
rel_prime_le_prime [lemma, in Coq.ZArith.Znumtheory]
rel_prime_mod_rev [lemma, in Coq.ZArith.Znumtheory]
rel_prime_mod [lemma, in Coq.ZArith.Znumtheory]
rel_prime_1 [lemma, in Coq.ZArith.Znumtheory]
rel_prime_div [lemma, in Coq.ZArith.Znumtheory]
rel_prime_sym [lemma, in Coq.ZArith.Znumtheory]
rel_prime_cross_prod [lemma, in Coq.ZArith.Znumtheory]
rel_prime_mult [lemma, in Coq.ZArith.Znumtheory]
rel_prime_bezout [lemma, in Coq.ZArith.Znumtheory]
rel_prime [definition, in Coq.ZArith.Znumtheory]
rem [abbreviation, in Coq.Numbers.Cyclic.Int63.Sint63]
Remainder [definition, in Coq.ZArith.Zdiv]
Remainder [definition, in Coq.ZArith.Zquot]
Remainder_equiv [lemma, in Coq.ZArith.Zdiv]
Remainder_alt [definition, in Coq.ZArith.Zdiv]
Remainder_equiv [lemma, in Coq.ZArith.Zquot]
Remainder_alt [definition, in Coq.ZArith.Zquot]
remove [definition, in Coq.Lists.List]
removeA [definition, in Coq.Lists.SetoidList]
removeA_equivlistA [lemma, in Coq.Lists.SetoidList]
removeA_NoDupA [lemma, in Coq.Lists.SetoidList]
removeA_InA [lemma, in Coq.Lists.SetoidList]
removeA_filter [lemma, in Coq.Lists.SetoidList]
removelast [definition, in Coq.Lists.List]
removelast_firstn_len [lemma, in Coq.Lists.List]
removelast_firstn [lemma, in Coq.Lists.List]
removelast_last [lemma, in Coq.Lists.List]
removelast_app [lemma, in Coq.Lists.List]
remove_incl [lemma, in Coq.Lists.List]
remove_alt [lemma, in Coq.Lists.List]
remove_concat [lemma, in Coq.Lists.List]
remove_length_lt [lemma, in Coq.Lists.List]
remove_length_le [lemma, in Coq.Lists.List]
remove_remove_eq [lemma, in Coq.Lists.List]
remove_remove_comm [lemma, in Coq.Lists.List]
remove_In [lemma, in Coq.Lists.List]
remove_app [lemma, in Coq.Lists.List]
remove_cons [lemma, in Coq.Lists.List]
remove' [definition, in Coq.Lists.List]
repeat [definition, in Coq.Lists.List]
Repeat [section, in Coq.Lists.List]
repeat_to_concat [lemma, in Coq.Lists.List]
repeat_eq_elt [lemma, in Coq.Lists.List]
repeat_eq_cons [lemma, in Coq.Lists.List]
repeat_eq_app [lemma, in Coq.Lists.List]
repeat_app [lemma, in Coq.Lists.List]
repeat_cons [lemma, in Coq.Lists.List]
repeat_spec [lemma, in Coq.Lists.List]
repeat_length [lemma, in Coq.Lists.List]
Repeat.A [variable, in Coq.Lists.List]
Repeat.decA [variable, in Coq.Lists.List]
replace [definition, in Coq.Vectors.VectorDef]
replace_replace_neq [lemma, in Coq.Vectors.VectorSpec]
replace_replace_eq [lemma, in Coq.Vectors.VectorSpec]
replace_id [lemma, in Coq.Vectors.VectorSpec]
replace_order [definition, in Coq.Vectors.VectorDef]
RepresentativeFunctionalChoice [abbreviation, in Coq.Logic.ChoiceFacts]
RepresentativeFunctionalChoice_on [definition, in Coq.Logic.ChoiceFacts]
representative_choice [lemma, in Coq.Logic.SetoidChoice]
representative_boolean_partition_imp_excluded_middle [lemma, in Coq.Logic.ClassicalFacts]
representative_boolean_partition [abbreviation, in Coq.Logic.ClassicalFacts]
repr_fun_choice_imp_relational_choice [lemma, in Coq.Logic.ChoiceFacts]
repr_fun_choice_imp_excluded_middle [lemma, in Coq.Logic.ChoiceFacts]
repr_fun_choice_imp_ext_function_repr [lemma, in Coq.Logic.ChoiceFacts]
repr_fun_choice_imp_ext_pred_repr [lemma, in Coq.Logic.ChoiceFacts]
repr_fun_choice_imp_ext_prop_repr [lemma, in Coq.Logic.ChoiceFacts]
repr:3 [binder, in Coq.Logic.ExtensionalFunctionRepresentative]
Reqb [definition, in Coq.Reals.ROrderedType]
Reqb_eq [lemma, in Coq.Reals.ROrderedType]
reqb:284 [binder, in Coq.setoid_ring.Ring_theory]
Req_appart_dec [lemma, in Coq.Reals.Rdefinitions]
Req_dne [lemma, in Coq.micromega.OrderedRing]
Req_em [lemma, in Coq.micromega.OrderedRing]
Req_EM_T [lemma, in Coq.Reals.RIneq]
Req_ge_sym [lemma, in Coq.Reals.RIneq]
Req_le_sym [lemma, in Coq.Reals.RIneq]
Req_ge [lemma, in Coq.Reals.RIneq]
Req_le [lemma, in Coq.Reals.RIneq]
Req_dec [lemma, in Coq.Reals.RIneq]
req_trans [lemma, in Coq.micromega.ZCoeff]
req_sym [lemma, in Coq.micromega.ZCoeff]
req_refl [lemma, in Coq.micromega.ZCoeff]
Req_dec [lemma, in Coq.Reals.ROrderedType]
Req_constr_leibniz [lemma, in Coq.Reals.ClassicalConstructiveReals]
Req_constr_refl [lemma, in Coq.Reals.ClassicalConstructiveReals]
Req_constr [definition, in Coq.Reals.ClassicalConstructiveReals]
req:283 [binder, in Coq.setoid_ring.Ring_theory]
req:294 [binder, in Coq.setoid_ring.Ring_theory]
req:447 [binder, in Coq.setoid_ring.Field_theory]
respectful [definition, in Coq.Classes.Morphisms]
respectful [definition, in Coq.Classes.CMorphisms]
respectful_morphism [instance, in Coq.Classes.Morphisms]
respectful_per [instance, in Coq.Classes.Morphisms]
respectful_hetero [definition, in Coq.Classes.Morphisms]
respectful_morphism [instance, in Coq.Classes.CMorphisms]
respectful_per [instance, in Coq.Classes.CMorphisms]
respectful_hetero [definition, in Coq.Classes.CMorphisms]
respecting [definition, in Coq.Classes.CEquivalence]
Respecting [section, in Coq.Classes.CEquivalence]
respecting [definition, in Coq.Classes.Equivalence]
Respecting [section, in Coq.Classes.Equivalence]
respecting_equiv [instance, in Coq.Classes.CEquivalence]
respecting_equiv [instance, in Coq.Classes.Equivalence]
Reste [definition, in Coq.Reals.Cos_rel]
Reste_E_cv [lemma, in Coq.Reals.Exp_prop]
Reste_E_maj [lemma, in Coq.Reals.Exp_prop]
Reste_E [definition, in Coq.Reals.Exp_prop]
reste_cv_R0 [lemma, in Coq.Reals.Cos_plus]
Reste1 [definition, in Coq.Reals.Cos_rel]
reste1_cv_R0 [lemma, in Coq.Reals.Cos_plus]
reste1_maj [lemma, in Coq.Reals.Cos_plus]
Reste2 [definition, in Coq.Reals.Cos_rel]
reste2_cv_R0 [lemma, in Coq.Reals.Cos_plus]
reste2_maj [lemma, in Coq.Reals.Cos_plus]
restriction_family [lemma, in Coq.Reals.Rtopology]
rest:11 [binder, in Coq.Strings.OctalString]
rest:11 [binder, in Coq.Strings.HexString]
rest:11 [binder, in Coq.Strings.BinaryString]
rest:15 [binder, in Coq.Strings.OctalString]
rest:15 [binder, in Coq.Strings.HexString]
rest:15 [binder, in Coq.Strings.BinaryString]
rest:7 [binder, in Coq.Strings.OctalString]
rest:7 [binder, in Coq.Strings.HexString]
rest:7 [binder, in Coq.Strings.BinaryString]
result:111 [binder, in Coq.ssr.ssreflect]
result:116 [binder, in Coq.ssr.ssreflect]
result:124 [binder, in Coq.ssr.ssreflect]
res:102 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
res:157 [binder, in Coq.setoid_ring.Ncring_polynom]
res:175 [binder, in Coq.setoid_ring.Ncring_polynom]
res:192 [binder, in Coq.micromega.Tauto]
res:250 [binder, in Coq.setoid_ring.Field_theory]
res:329 [binder, in Coq.setoid_ring.Ring_polynom]
res:339 [binder, in Coq.setoid_ring.Ring_polynom]
res:343 [binder, in Coq.micromega.EnvRing]
res:353 [binder, in Coq.micromega.EnvRing]
retract [record, in Coq.Logic.Berardi]
retract [record, in Coq.Logic.ClassicalFacts]
retract_pow_U_U [lemma, in Coq.Logic.Berardi]
retract_cond [record, in Coq.Logic.Berardi]
returnType [definition, in Coq.ssr.ssreflect]
rev [definition, in Coq.Init.Decimal]
rev [definition, in Coq.Lists.List]
rev [definition, in Coq.Init.Hexadecimal]
rev [definition, in Coq.Vectors.VectorDef]
Reval_nformula_dec [lemma, in Coq.micromega.RMicromega]
Reval_formula_compat [lemma, in Coq.micromega.RMicromega]
Reval_pop2_eval_op2 [lemma, in Coq.micromega.RMicromega]
Reval_formula' [definition, in Coq.micromega.RMicromega]
Reval_formula [definition, in Coq.micromega.RMicromega]
Reval_op2_hold [lemma, in Coq.micromega.RMicromega]
Reval_op2 [definition, in Coq.micromega.RMicromega]
Reval_bop2 [definition, in Coq.micromega.RMicromega]
Reval_pop2 [definition, in Coq.micromega.RMicromega]
Reval_expr [definition, in Coq.micromega.RMicromega]
revapp [definition, in Coq.Init.Decimal]
revapp [definition, in Coq.Init.Hexadecimal]
revapp_nil_inv [lemma, in Coq.Numbers.DecimalFacts]
revapp_spec [lemma, in Coq.Numbers.DecimalFacts]
revapp_nil_inv [lemma, in Coq.Numbers.HexadecimalFacts]
revapp_spec [lemma, in Coq.Numbers.HexadecimalFacts]
reverse_sum [lemma, in Coq.Reals.Abstract.ConstructiveSum]
rev_lnorm_rev [lemma, in Coq.Numbers.DecimalFacts]
rev_nil_inv [lemma, in Coq.Numbers.DecimalFacts]
rev_nztail_rev [lemma, in Coq.Numbers.DecimalFacts]
rev_rev [lemma, in Coq.Numbers.DecimalFacts]
rev_spec [lemma, in Coq.Numbers.DecimalFacts]
rev_acc_rev [abbreviation, in Coq.Lists.List]
rev_acc [abbreviation, in Coq.Lists.List]
rev_alt [lemma, in Coq.Lists.List]
rev_append_rev [lemma, in Coq.Lists.List]
rev_append [definition, in Coq.Lists.List]
rev_nth [lemma, in Coq.Lists.List]
rev_length [lemma, in Coq.Lists.List]
rev_ind [lemma, in Coq.Lists.List]
rev_list_ind [lemma, in Coq.Lists.List]
rev_eq_app [lemma, in Coq.Lists.List]
rev_involutive [lemma, in Coq.Lists.List]
rev_unit [lemma, in Coq.Lists.List]
rev_app_distr [lemma, in Coq.Lists.List]
rev_trans [lemma, in Coq.ssr.ssrbool]
rev_left_loop [definition, in Coq.ssr.ssrfun]
rev_right_loop [definition, in Coq.ssr.ssrfun]
rev_lnorm_rev [lemma, in Coq.Numbers.HexadecimalFacts]
rev_nil_inv [lemma, in Coq.Numbers.HexadecimalFacts]
rev_nztail_rev [lemma, in Coq.Numbers.HexadecimalFacts]
rev_rev [lemma, in Coq.Numbers.HexadecimalFacts]
rev_spec [lemma, in Coq.Numbers.HexadecimalFacts]
rev_append [definition, in Coq.Vectors.VectorDef]
rev_append_tail [definition, in Coq.Vectors.VectorDef]
rev_eqlistA_compat [instance, in Coq.Lists.SetoidList]
rev' [definition, in Coq.Lists.List]
RewriteRelation [record, in Coq.Classes.RelationClasses]
RewriteRelation [record, in Coq.Classes.CRelationClasses]
rewrite_relation_eq_dom [lemma, in Coq.Classes.Morphisms]
rewrite_relation_pointwise [lemma, in Coq.Classes.Morphisms]
rew_iff_rev [lemma, in Coq.micromega.ZifyClasses]
rew_iff [lemma, in Coq.micromega.ZifyClasses]
rew_sig2 [lemma, in Coq.Init.Specif]
rew_sigT2 [lemma, in Coq.Init.Specif]
rew_sig [lemma, in Coq.Init.Specif]
rew_sigT [lemma, in Coq.Init.Specif]
rew_pair [lemma, in Coq.Init.Datatypes]
rew_ex2 [lemma, in Coq.Init.Logic]
rew_ex [lemma, in Coq.Init.Logic]
rew_const [lemma, in Coq.Init.Logic]
rew_compose [lemma, in Coq.Init.Logic]
rew_swap [lemma, in Coq.Init.Logic]
rew_map [lemma, in Coq.Init.Logic]
rew_opp_l [lemma, in Coq.Init.Logic]
rew_opp_r [lemma, in Coq.Init.Logic]
Rext [abbreviation, in Coq.setoid_ring.RealField]
Rext [lemma, in Coq.nsatz.NsatzTactic]
RfactN_fact2N_factk [lemma, in Coq.Reals.Rprod]
Rfield [lemma, in Coq.setoid_ring.RealField]
Rfloor [definition, in Coq.Reals.Cauchy.ConstructiveRcomplete]
Rfunctions [library]
rF:188 [binder, in Coq.ssr.ssrfun]
rf:90 [binder, in Coq.FSets.FSetPositive]
rf:90 [binder, in Coq.MSets.MSetPositive]
Rge [definition, in Coq.Reals.Rdefinitions]
Rgen_phiPOS_not_0 [lemma, in Coq.setoid_ring.RealField]
Rgen_phiPOS [lemma, in Coq.setoid_ring.RealField]
Rgeom [library]
Rge_minus [lemma, in Coq.Reals.RIneq]
Rge_or_gt [lemma, in Coq.Reals.RIneq]
Rge_gt_dec [lemma, in Coq.Reals.RIneq]
Rge_dec [lemma, in Coq.Reals.RIneq]
Rge_gt_trans [lemma, in Coq.Reals.RIneq]
Rge_trans [lemma, in Coq.Reals.RIneq]
Rge_ge_eq [lemma, in Coq.Reals.RIneq]
Rge_antisym [lemma, in Coq.Reals.RIneq]
Rge_not_gt [lemma, in Coq.Reals.RIneq]
Rge_not_lt [lemma, in Coq.Reals.RIneq]
Rge_le [lemma, in Coq.Reals.RIneq]
Rge_refl [lemma, in Coq.Reals.RIneq]
Rgt [definition, in Coq.Reals.Rdefinitions]
Rgt_minus [lemma, in Coq.Reals.RIneq]
Rgt_or_ge [lemma, in Coq.Reals.RIneq]
Rgt_ge_dec [lemma, in Coq.Reals.RIneq]
Rgt_dec [lemma, in Coq.Reals.RIneq]
Rgt_ge_trans [lemma, in Coq.Reals.RIneq]
Rgt_trans [lemma, in Coq.Reals.RIneq]
Rgt_eq_compat [lemma, in Coq.Reals.RIneq]
Rgt_asym [lemma, in Coq.Reals.RIneq]
Rgt_not_ge [lemma, in Coq.Reals.RIneq]
Rgt_not_le [lemma, in Coq.Reals.RIneq]
Rgt_lt [lemma, in Coq.Reals.RIneq]
Rgt_ge [lemma, in Coq.Reals.RIneq]
Rgt_not_eq [lemma, in Coq.Reals.RIneq]
Rgt_irrefl [lemma, in Coq.Reals.RIneq]
Rgt_2PI_0 [lemma, in Coq.Reals.Rtrigo_calc]
Rgt_3PI2_0 [lemma, in Coq.Reals.Rtrigo_calc]
RHasMinMax [module, in Coq.Reals.Rminmax]
RHasMinMax.max [definition, in Coq.Reals.Rminmax]
RHasMinMax.max_r [definition, in Coq.Reals.Rminmax]
RHasMinMax.max_l [definition, in Coq.Reals.Rminmax]
RHasMinMax.min [definition, in Coq.Reals.Rminmax]
RHasMinMax.min_r [definition, in Coq.Reals.Rminmax]
RHasMinMax.min_l [definition, in Coq.Reals.Rminmax]
rhs:102 [binder, in Coq.micromega.RMicromega]
rhs:200 [binder, in Coq.micromega.RingMicromega]
rhs:204 [binder, in Coq.micromega.RingMicromega]
rhs:206 [binder, in Coq.micromega.RingMicromega]
rhs:211 [binder, in Coq.micromega.RingMicromega]
rhs:213 [binder, in Coq.micromega.RingMicromega]
rhs:217 [binder, in Coq.micromega.RingMicromega]
rhs:220 [binder, in Coq.micromega.RingMicromega]
rhs:223 [binder, in Coq.micromega.RingMicromega]
rhs:306 [binder, in Coq.micromega.RingMicromega]
rhs:50 [binder, in Coq.micromega.QMicromega]
rhs:52 [binder, in Coq.micromega.ZMicromega]
rhs:83 [binder, in Coq.micromega.ZMicromega]
rhs:86 [binder, in Coq.micromega.ZMicromega]
rhs:89 [binder, in Coq.micromega.ZMicromega]
rhs:90 [binder, in Coq.micromega.RMicromega]
rhs:97 [binder, in Coq.micromega.ZMicromega]
rhs:99 [binder, in Coq.micromega.ZMicromega]
Rh:171 [binder, in Coq.setoid_ring.Ncring]
Rh:22 [binder, in Coq.setoid_ring.Ncring_polynom]
Rid:12 [binder, in Coq.nsatz.NsatzTactic]
Rid:28 [binder, in Coq.setoid_ring.Integral_domain]
RiemannInt [definition, in Coq.Reals.RiemannInt]
RiemannInt [library]
RiemannInt_const_bound [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P33 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P32 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P31 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P30 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P29 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P28 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P27 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P26 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P25 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P24 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P23 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P22 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P21 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P20 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P19 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P18 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P17 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P16 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P15 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P14 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P13 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P12 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P11 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P10 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P9 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P8 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P7 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P6 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P5 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P4 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_exists [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P3 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P2 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_P1 [lemma, in Coq.Reals.RiemannInt]
RiemannInt_SF [definition, in Coq.Reals.RiemannInt_SF]
RiemannInt_SF [library]
Riemann_integrable_Ropp [lemma, in Coq.Reals.RiemannInt]
Riemann_integrable_scal [lemma, in Coq.Reals.RiemannInt]
Riemann_integrable_ext [lemma, in Coq.Reals.RiemannInt]
Riemann_integrable [definition, in Coq.Reals.RiemannInt]
right [constructor, in Coq.Init.Specif]
right [abbreviation, in Coq.setoid_ring.Field_theory]
RightDistributivityImplicationOverDisjunction [definition, in Coq.Logic.ClassicalFacts]
right_transitive [definition, in Coq.ssr.ssrbool]
right_distributive [definition, in Coq.ssr.ssrfun]
right_zero [definition, in Coq.ssr.ssrfun]
right_loop [definition, in Coq.ssr.ssrfun]
right_commutative [definition, in Coq.ssr.ssrfun]
right_id [definition, in Coq.ssr.ssrfun]
right_injective [definition, in Coq.ssr.ssrfun]
right_inverse [definition, in Coq.ssr.ssrfun]
right_prefix [lemma, in Coq.Wellfounded.Lexicographic_Exponentiation]
right_sym [constructor, in Coq.Relations.Relation_Operators]
right_slex [constructor, in Coq.Relations.Relation_Operators]
right_lex [constructor, in Coq.Relations.Relation_Operators]
right:611 [binder, in Coq.Lists.List]
RIneq [library]
Ring [section, in Coq.setoid_ring.Ncring]
Ring [record, in Coq.setoid_ring.Ncring]
Ring [library]
RingMicromega [library]
RingSyntax [module, in Coq.setoid_ring.Ring_theory]
Rings_R [library]
Rings_Q [library]
Rings_Z [library]
ring_rw_correct [lemma, in Coq.setoid_ring.Ring_polynom]
ring_rw_pow_correct [lemma, in Coq.setoid_ring.Ring_polynom]
ring_correct [lemma, in Coq.setoid_ring.Ring_polynom]
ring_S_inj [lemma, in Coq.setoid_ring.Field_theory]
ring_correct [abbreviation, in Coq.setoid_ring.Field_theory]
ring_rw_pow_correct [abbreviation, in Coq.setoid_ring.Field_theory]
ring_rw_correct [abbreviation, in Coq.setoid_ring.Field_theory]
ring_subst_niter [definition, in Coq.setoid_ring.Ring_tac]
ring_correct [lemma, in Coq.setoid_ring.Ncring_polynom]
ring_theory_switch_eq [lemma, in Coq.Numbers.Cyclic.Int63.Ring63]
ring_kind [inductive, in Coq.setoid_ring.Ring_theory]
ring_morph [record, in Coq.setoid_ring.Ring_theory]
ring_eq_ext [record, in Coq.setoid_ring.Ring_theory]
ring_theory [record, in Coq.setoid_ring.Ring_theory]
ring_opp_zero [lemma, in Coq.setoid_ring.Ncring]
ring_add_assoc2 [lemma, in Coq.setoid_ring.Ncring]
ring_add_assoc1 [lemma, in Coq.setoid_ring.Ncring]
ring_add_0_r [lemma, in Coq.setoid_ring.Ncring]
ring_sub_ext [lemma, in Coq.setoid_ring.Ncring]
ring_opp_opp [lemma, in Coq.setoid_ring.Ncring]
ring_opp_add [lemma, in Coq.setoid_ring.Ncring]
ring_opp_mul_r [lemma, in Coq.setoid_ring.Ncring]
ring_opp_mul_l [lemma, in Coq.setoid_ring.Ncring]
ring_mul_0_r [lemma, in Coq.setoid_ring.Ncring]
ring_mul_0_l [lemma, in Coq.setoid_ring.Ncring]
ring_morphism_eq [projection, in Coq.setoid_ring.Ncring]
ring_morphism_opp [projection, in Coq.setoid_ring.Ncring]
ring_morphism_mul [projection, in Coq.setoid_ring.Ncring]
ring_morphism_sub [projection, in Coq.setoid_ring.Ncring]
ring_morphism_add [projection, in Coq.setoid_ring.Ncring]
ring_morphism1 [projection, in Coq.setoid_ring.Ncring]
ring_morphism0 [projection, in Coq.setoid_ring.Ncring]
Ring_morphism [record, in Coq.setoid_ring.Ncring]
Ring_power [section, in Coq.setoid_ring.Ncring]
ring_opp_def [projection, in Coq.setoid_ring.Ncring]
ring_sub_def [projection, in Coq.setoid_ring.Ncring]
ring_distr_r [projection, in Coq.setoid_ring.Ncring]
ring_distr_l [projection, in Coq.setoid_ring.Ncring]
ring_mul_assoc [projection, in Coq.setoid_ring.Ncring]
ring_mul_1_r [projection, in Coq.setoid_ring.Ncring]
ring_mul_1_l [projection, in Coq.setoid_ring.Ncring]
ring_add_assoc [projection, in Coq.setoid_ring.Ncring]
ring_add_comm [projection, in Coq.setoid_ring.Ncring]
ring_add_0_l [projection, in Coq.setoid_ring.Ncring]
ring_opp_comp [projection, in Coq.setoid_ring.Ncring]
ring_sub_comp [projection, in Coq.setoid_ring.Ncring]
ring_mult_comp [projection, in Coq.setoid_ring.Ncring]
ring_plus_comp [projection, in Coq.setoid_ring.Ncring]
ring_setoid [projection, in Coq.setoid_ring.Ncring]
ring_eq:8 [binder, in Coq.setoid_ring.Ncring]
Ring_ops [record, in Coq.setoid_ring.Ncring]
ring_ops_wd [lemma, in Coq.micromega.ZCoeff]
ring_theory_switch_eq [lemma, in Coq.Numbers.Cyclic.Int31.Ring31]
Ring_base [library]
Ring_tac [library]
Ring_polynom [library]
Ring_theory [library]
ring0:2 [binder, in Coq.setoid_ring.Ncring]
ring1:3 [binder, in Coq.setoid_ring.Ncring]
Ring31 [library]
Ring63 [library]
Rintegral_domain_pow [lemma, in Coq.setoid_ring.Integral_domain]
Rinv [abbreviation, in Coq.Reals.Rdefinitions]
RinvImpl [module, in Coq.Reals.Rdefinitions]
RinvImpl.Rinv [definition, in Coq.Reals.Rdefinitions]
RinvImpl.Rinv_def [definition, in Coq.Reals.Rdefinitions]
RinvN [definition, in Coq.Reals.RiemannInt]
RinvN_cv [lemma, in Coq.Reals.RiemannInt]
RinvN_pos [lemma, in Coq.Reals.RiemannInt]
RinvSig [module, in Coq.Reals.Rdefinitions]
RinvSig.Rinv [axiom, in Coq.Reals.Rdefinitions]
RinvSig.Rinv_def [axiom, in Coq.Reals.Rdefinitions]
Rinv_pow [abbreviation, in Coq.Reals.Rfunctions]
Rinv_pow_depr [lemma, in Coq.Reals.Rfunctions]
rinv_nz [lemma, in Coq.setoid_ring.Field_theory]
Rinv_Rdiv [abbreviation, in Coq.Reals.Rpower]
Rinv_Rdiv_depr [lemma, in Coq.Reals.Rpower]
Rinv_l [lemma, in Coq.Reals.Raxioms]
Rinv_le_contravar [lemma, in Coq.Reals.RIneq]
Rinv_1_lt_contravar [lemma, in Coq.Reals.RIneq]
Rinv_lt_contravar [lemma, in Coq.Reals.RIneq]
Rinv_lt_0_compat [lemma, in Coq.Reals.RIneq]
Rinv_0_lt_compat [lemma, in Coq.Reals.RIneq]
Rinv_mult_simpl [lemma, in Coq.Reals.RIneq]
Rinv_r_simpl_m [lemma, in Coq.Reals.RIneq]
Rinv_r_simpl_l [lemma, in Coq.Reals.RIneq]
Rinv_r_simpl_r [lemma, in Coq.Reals.RIneq]
Rinv_div [lemma, in Coq.Reals.RIneq]
Rinv_opp [lemma, in Coq.Reals.RIneq]
Rinv_mult_distr [abbreviation, in Coq.Reals.RIneq]
Rinv_mult_distr_depr [lemma, in Coq.Reals.RIneq]
Rinv_mult [lemma, in Coq.Reals.RIneq]
Rinv_involutive [abbreviation, in Coq.Reals.RIneq]
Rinv_involutive_depr [lemma, in Coq.Reals.RIneq]
Rinv_inv [lemma, in Coq.Reals.RIneq]
Rinv_neq_0_compat [lemma, in Coq.Reals.RIneq]
Rinv_1 [lemma, in Coq.Reals.RIneq]
Rinv_0 [lemma, in Coq.Reals.RIneq]
Rinv_r_sym [lemma, in Coq.Reals.RIneq]
Rinv_l_sym [lemma, in Coq.Reals.RIneq]
Rinv_r [lemma, in Coq.Reals.RIneq]
Rinv_1 [lemma, in Coq.micromega.RMicromega]
Rinv_eq_compat [lemma, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
Rinv_quot [definition, in Coq.Reals.ClassicalConstructiveReals]
Rinv_pos [lemma, in Coq.Reals.ClassicalConstructiveReals]
rinv:446 [binder, in Coq.setoid_ring.Field_theory]
RisLinearOrder [lemma, in Coq.Reals.ClassicalConstructiveReals]
rI:289 [binder, in Coq.setoid_ring.Ring_theory]
rI:442 [binder, in Coq.setoid_ring.Field_theory]
Ri:53 [binder, in Coq.Classes.RelationPairs]
Rle [definition, in Coq.Reals.Rdefinitions]
Rle [definition, in Coq.Reals.ClassicalDedekindReals]
Rleft_inverse [lemma, in Coq.Reals.ClassicalConstructiveReals]
Rlength [abbreviation, in Coq.Reals.RList]
Rle_pow [lemma, in Coq.Reals.Rfunctions]
Rle_mult_inv_pos [lemma, in Coq.Reals.R_sqrt]
Rle_cv_lim [lemma, in Coq.Reals.RiemannInt]
Rle_Qle [lemma, in Coq.QArith.Qreals]
Rle_Rpower_l [lemma, in Coq.Reals.Rpower]
Rle_Rpower [lemma, in Coq.Reals.Rpower]
Rle_le_minus [lemma, in Coq.micromega.OrderedRing]
Rle_ngt [lemma, in Coq.micromega.OrderedRing]
Rle_gt_cases [lemma, in Coq.micromega.OrderedRing]
Rle_lt_trans [lemma, in Coq.micromega.OrderedRing]
Rle_lt_eq [lemma, in Coq.micromega.OrderedRing]
Rle_trans [lemma, in Coq.micromega.OrderedRing]
Rle_antisymm [lemma, in Coq.micromega.OrderedRing]
Rle_refl [lemma, in Coq.micromega.OrderedRing]
Rle_abs [lemma, in Coq.Reals.Rbasic_fun]
Rle_max_compat_l [lemma, in Coq.Reals.Rbasic_fun]
Rle_max_compat_r [lemma, in Coq.Reals.Rbasic_fun]
Rle_min_compat_l [lemma, in Coq.Reals.Rbasic_fun]
Rle_min_compat_r [lemma, in Coq.Reals.Rbasic_fun]
Rle_mult_inv_pos [lemma, in Coq.micromega.Fourier_util]
Rle_zero_pos_plus1 [lemma, in Coq.micromega.Fourier_util]
Rle_Rinv [lemma, in Coq.Reals.RIneq]
Rle_lt_0_plus_1 [lemma, in Coq.Reals.RIneq]
Rle_0_1 [lemma, in Coq.Reals.RIneq]
Rle_0_sqr [lemma, in Coq.Reals.RIneq]
Rle_minus [lemma, in Coq.Reals.RIneq]
Rle_lt_or_eq_dec [lemma, in Coq.Reals.RIneq]
Rle_or_lt [lemma, in Coq.Reals.RIneq]
Rle_lt_dec [lemma, in Coq.Reals.RIneq]
Rle_dec [lemma, in Coq.Reals.RIneq]
Rle_lt_trans [lemma, in Coq.Reals.RIneq]
Rle_trans [lemma, in Coq.Reals.RIneq]
Rle_le_eq [lemma, in Coq.Reals.RIneq]
Rle_antisym [lemma, in Coq.Reals.RIneq]
Rle_not_gt [lemma, in Coq.Reals.RIneq]
Rle_not_lt [lemma, in Coq.Reals.RIneq]
Rle_ge [lemma, in Coq.Reals.RIneq]
Rle_refl [lemma, in Coq.Reals.RIneq]
Rle_antisym [lemma, in Coq.Reals.ClassicalDedekindReals]
Rlimit [library]
Rlist [abbreviation, in Coq.Reals.RList]
RList [library]
RList_P29 [lemma, in Coq.Reals.RList]
RList_P26 [lemma, in Coq.Reals.RList]
RList_P25 [lemma, in Coq.Reals.RList]
RList_P24 [lemma, in Coq.Reals.RList]
RList_P22 [lemma, in Coq.Reals.RList]
RList_P21 [lemma, in Coq.Reals.RList]
RList_P20 [lemma, in Coq.Reals.RList]
RList_P19 [lemma, in Coq.Reals.RList]
RList_P18 [lemma, in Coq.Reals.RList]
RList_P17 [lemma, in Coq.Reals.RList]
RList_P16 [lemma, in Coq.Reals.RList]
RList_P15 [lemma, in Coq.Reals.RList]
RList_P14 [lemma, in Coq.Reals.RList]
RList_P13 [lemma, in Coq.Reals.RList]
RList_P12 [lemma, in Coq.Reals.RList]
RList_P11 [lemma, in Coq.Reals.RList]
RList_P10 [lemma, in Coq.Reals.RList]
RList_P9 [lemma, in Coq.Reals.RList]
RList_P8 [lemma, in Coq.Reals.RList]
RList_P7 [lemma, in Coq.Reals.RList]
RList_P6 [lemma, in Coq.Reals.RList]
RList_P5 [lemma, in Coq.Reals.RList]
RList_P4 [lemma, in Coq.Reals.RList]
RList_P3 [lemma, in Coq.Reals.RList]
RList_P2 [lemma, in Coq.Reals.RList]
RList_P1 [lemma, in Coq.Reals.RList]
RList_P0 [lemma, in Coq.Reals.RList]
Rlist_P1 [lemma, in Coq.Reals.RList]
Rln [definition, in Coq.Reals.Rpower]
Rlog [definition, in Coq.Reals.Rpower]
Rlogic [library]
Rlog_pow [lemma, in Coq.Reals.Rpower]
Rlt [abbreviation, in Coq.Reals.Rdefinitions]
Rlt_0_2 [lemma, in Coq.setoid_ring.RealField]
Rlt_n_Sn [lemma, in Coq.setoid_ring.RealField]
Rlt_4 [lemma, in Coq.Reals.Ranalysis2]
Rlt_pow [lemma, in Coq.Reals.Rfunctions]
Rlt_pow_R1 [lemma, in Coq.Reals.Rfunctions]
Rlt_mult_inv_pos [lemma, in Coq.Reals.R_sqrt]
Rlt_Qlt [lemma, in Coq.QArith.Qreals]
Rlt_Rpower_l [lemma, in Coq.Reals.Rpower]
Rlt_lt_succ [lemma, in Coq.micromega.OrderedRing]
Rlt_succ_r [lemma, in Coq.micromega.OrderedRing]
Rlt_0_1 [lemma, in Coq.micromega.OrderedRing]
Rlt_lt_minus [lemma, in Coq.micromega.OrderedRing]
Rlt_nge [lemma, in Coq.micromega.OrderedRing]
Rlt_neq [lemma, in Coq.micromega.OrderedRing]
Rlt_le_trans [lemma, in Coq.micromega.OrderedRing]
Rlt_trans [lemma, in Coq.micromega.OrderedRing]
Rlt_le_neq [lemma, in Coq.micromega.OrderedRing]
Rlt_trichotomy [lemma, in Coq.micromega.OrderedRing]
Rlt_trans [lemma, in Coq.Reals.Raxioms]
Rlt_asym [lemma, in Coq.Reals.Raxioms]
Rlt_eps4_eps [lemma, in Coq.Reals.Rlimit]
Rlt_eps2_eps [lemma, in Coq.Reals.Rlimit]
Rlt_zero_pos_plus1 [lemma, in Coq.micromega.Fourier_util]
Rlt_mult_inv_pos [lemma, in Coq.micromega.Fourier_util]
Rlt_R0_R2 [lemma, in Coq.Reals.DiscrR]
Rlt_plus_1 [lemma, in Coq.Reals.RIneq]
Rlt_0_1 [lemma, in Coq.Reals.RIneq]
Rlt_0_sqr [lemma, in Coq.Reals.RIneq]
Rlt_Rminus [lemma, in Coq.Reals.RIneq]
Rlt_minus [lemma, in Coq.Reals.RIneq]
Rlt_or_le [lemma, in Coq.Reals.RIneq]
Rlt_le_dec [lemma, in Coq.Reals.RIneq]
Rlt_dec [lemma, in Coq.Reals.RIneq]
Rlt_le_trans [lemma, in Coq.Reals.RIneq]
Rlt_eq_compat [lemma, in Coq.Reals.RIneq]
Rlt_not_ge [lemma, in Coq.Reals.RIneq]
Rlt_not_le [lemma, in Coq.Reals.RIneq]
Rlt_gt [lemma, in Coq.Reals.RIneq]
Rlt_le [lemma, in Coq.Reals.RIneq]
Rlt_dichotomy_converse [lemma, in Coq.Reals.RIneq]
Rlt_not_eq [lemma, in Coq.Reals.RIneq]
Rlt_irrefl [lemma, in Coq.Reals.RIneq]
Rlt_3PI2_2PI [lemma, in Coq.Reals.Rtrigo_calc]
Rlt_PI_3PI2 [lemma, in Coq.Reals.Rtrigo_calc]
Rlt_sqrt3_0 [lemma, in Coq.Reals.Rtrigo_calc]
Rlt_sqrt2_0 [lemma, in Coq.Reals.Rtrigo_calc]
Rlt_epsilon [definition, in Coq.Reals.ClassicalConstructiveReals]
rl:346 [binder, in Coq.MSets.MSetRBT]
rl:356 [binder, in Coq.MSets.MSetRBT]
rl:60 [binder, in Coq.MSets.MSetAVL]
rl:61 [binder, in Coq.MSets.MSetAVL]
rl:73 [binder, in Coq.FSets.FMapAVL]
rl:74 [binder, in Coq.FSets.FMapAVL]
Rmax [definition, in Coq.Reals.Rbasic_fun]
RmaxAbs [lemma, in Coq.Reals.Rbasic_fun]
RmaxLess1 [abbreviation, in Coq.Reals.Rbasic_fun]
RmaxLess2 [abbreviation, in Coq.Reals.Rbasic_fun]
RmaxRmult [lemma, in Coq.Reals.Rbasic_fun]
RmaxSym [abbreviation, in Coq.Reals.Rbasic_fun]
Rmax_r [lemma, in Coq.Reals.Rminmax]
Rmax_l [lemma, in Coq.Reals.Rminmax]
Rmax_N [definition, in Coq.Reals.Rseries]
Rmax_assoc [lemma, in Coq.Reals.Rbasic_fun]
Rmax_neg [lemma, in Coq.Reals.Rbasic_fun]
Rmax_Rlt [lemma, in Coq.Reals.Rbasic_fun]
Rmax_lub_lt [lemma, in Coq.Reals.Rbasic_fun]
Rmax_lub [lemma, in Coq.Reals.Rbasic_fun]
Rmax_stable_in_negreal [lemma, in Coq.Reals.Rbasic_fun]
Rmax_right [lemma, in Coq.Reals.Rbasic_fun]
Rmax_left [lemma, in Coq.Reals.Rbasic_fun]
Rmax_r [lemma, in Coq.Reals.Rbasic_fun]
Rmax_l [lemma, in Coq.Reals.Rbasic_fun]
Rmax_comm [lemma, in Coq.Reals.Rbasic_fun]
Rmax_Rle [lemma, in Coq.Reals.Rbasic_fun]
Rmax_case_strong [lemma, in Coq.Reals.Rbasic_fun]
Rmax_case [lemma, in Coq.Reals.Rbasic_fun]
RMicromega [library]
Rmin [definition, in Coq.Reals.Rbasic_fun]
Rminmax [lemma, in Coq.Reals.Rbasic_fun]
Rminmax [library]
Rminus [definition, in Coq.Reals.Rdefinitions]
Rminus_fp2 [lemma, in Coq.Reals.R_Ifp]
Rminus_fp1 [lemma, in Coq.Reals.R_Ifp]
Rminus_Int_part2 [lemma, in Coq.Reals.R_Ifp]
Rminus_Int_part1 [lemma, in Coq.Reals.R_Ifp]
Rminus_eq_0 [lemma, in Coq.micromega.OrderedRing]
Rminus_ge [lemma, in Coq.Reals.RIneq]
Rminus_le [lemma, in Coq.Reals.RIneq]
Rminus_gt_0_lt [lemma, in Coq.Reals.RIneq]
Rminus_gt [lemma, in Coq.Reals.RIneq]
Rminus_lt [lemma, in Coq.Reals.RIneq]
Rminus_not_eq_right [lemma, in Coq.Reals.RIneq]
Rminus_not_eq [lemma, in Coq.Reals.RIneq]
Rminus_eq_contra [lemma, in Coq.Reals.RIneq]
Rminus_diag_uniq_sym [lemma, in Coq.Reals.RIneq]
Rminus_diag_uniq [lemma, in Coq.Reals.RIneq]
Rminus_eq_0 [lemma, in Coq.Reals.RIneq]
Rminus_diag_eq [lemma, in Coq.Reals.RIneq]
Rminus_0_l [lemma, in Coq.Reals.RIneq]
Rminus_0_r [lemma, in Coq.Reals.RIneq]
Rmin_2 [abbreviation, in Coq.Reals.Ranalysis2]
Rmin_pos [abbreviation, in Coq.Reals.Ranalysis2]
Rmin_r [lemma, in Coq.Reals.Rminmax]
Rmin_l [lemma, in Coq.Reals.Rminmax]
Rmin_assoc [lemma, in Coq.Reals.Rbasic_fun]
Rmin_glb_lt [lemma, in Coq.Reals.Rbasic_fun]
Rmin_glb [lemma, in Coq.Reals.Rbasic_fun]
Rmin_pos [lemma, in Coq.Reals.Rbasic_fun]
Rmin_stable_in_posreal [lemma, in Coq.Reals.Rbasic_fun]
Rmin_comm [lemma, in Coq.Reals.Rbasic_fun]
Rmin_right [lemma, in Coq.Reals.Rbasic_fun]
Rmin_left [lemma, in Coq.Reals.Rbasic_fun]
Rmin_r [lemma, in Coq.Reals.Rbasic_fun]
Rmin_l [lemma, in Coq.Reals.Rbasic_fun]
Rmin_Rgt [lemma, in Coq.Reals.Rbasic_fun]
Rmin_Rgt_r [lemma, in Coq.Reals.Rbasic_fun]
Rmin_Rgt_l [lemma, in Coq.Reals.Rbasic_fun]
Rmin_case_strong [lemma, in Coq.Reals.Rbasic_fun]
Rmin_case [lemma, in Coq.Reals.Rbasic_fun]
rmnz:157 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
rmnz:309 [binder, in Coq.Reals.Abstract.ConstructiveReals]
Rmult [abbreviation, in Coq.Reals.Rdefinitions]
Rmult_lt_compat_l [lemma, in Coq.Reals.Raxioms]
Rmult_plus_distr_l [lemma, in Coq.Reals.Raxioms]
Rmult_1_l [lemma, in Coq.Reals.Raxioms]
Rmult_assoc [lemma, in Coq.Reals.Raxioms]
Rmult_comm [lemma, in Coq.Reals.Raxioms]
Rmult_ge_0_gt_0_lt_compat [lemma, in Coq.Reals.RIneq]
Rmult_le_pos [lemma, in Coq.Reals.RIneq]
Rmult_le_reg_r [lemma, in Coq.Reals.RIneq]
Rmult_le_reg_l [lemma, in Coq.Reals.RIneq]
Rmult_gt_reg_l [lemma, in Coq.Reals.RIneq]
Rmult_lt_reg_r [lemma, in Coq.Reals.RIneq]
Rmult_lt_reg_l [lemma, in Coq.Reals.RIneq]
Rmult_lt_gt_compat_neg_l [lemma, in Coq.Reals.RIneq]
Rmult_le_ge_compat_neg_l [lemma, in Coq.Reals.RIneq]
Rmult_le_compat_neg_l [lemma, in Coq.Reals.RIneq]
Rmult_gt_0_compat [lemma, in Coq.Reals.RIneq]
Rmult_lt_0_compat [lemma, in Coq.Reals.RIneq]
Rmult_le_0_lt_compat [lemma, in Coq.Reals.RIneq]
Rmult_gt_0_lt_compat [lemma, in Coq.Reals.RIneq]
Rmult_ge_compat [lemma, in Coq.Reals.RIneq]
Rmult_le_compat [lemma, in Coq.Reals.RIneq]
Rmult_ge_compat_r [lemma, in Coq.Reals.RIneq]
Rmult_ge_compat_l [lemma, in Coq.Reals.RIneq]
Rmult_le_compat_r [lemma, in Coq.Reals.RIneq]
Rmult_le_compat_l [lemma, in Coq.Reals.RIneq]
Rmult_gt_compat_l [lemma, in Coq.Reals.RIneq]
Rmult_gt_compat_r [lemma, in Coq.Reals.RIneq]
Rmult_lt_compat_r [lemma, in Coq.Reals.RIneq]
Rmult_minus_distr_r [lemma, in Coq.Reals.RIneq]
Rmult_minus_distr_l [lemma, in Coq.Reals.RIneq]
Rmult_opp_opp [lemma, in Coq.Reals.RIneq]
Rmult_plus_distr_r [lemma, in Coq.Reals.RIneq]
Rmult_integral_contrapositive_currified [lemma, in Coq.Reals.RIneq]
Rmult_integral_contrapositive [lemma, in Coq.Reals.RIneq]
Rmult_neq_0_reg [lemma, in Coq.Reals.RIneq]
Rmult_eq_0_compat_l [lemma, in Coq.Reals.RIneq]
Rmult_eq_0_compat_r [lemma, in Coq.Reals.RIneq]
Rmult_eq_0_compat [lemma, in Coq.Reals.RIneq]
Rmult_integral [lemma, in Coq.Reals.RIneq]
Rmult_eq_reg_r [lemma, in Coq.Reals.RIneq]
Rmult_eq_reg_l [lemma, in Coq.Reals.RIneq]
Rmult_eq_compat_r [lemma, in Coq.Reals.RIneq]
Rmult_eq_compat_l [lemma, in Coq.Reals.RIneq]
Rmult_1_r [lemma, in Coq.Reals.RIneq]
Rmult_ne [lemma, in Coq.Reals.RIneq]
Rmult_0_l [lemma, in Coq.Reals.RIneq]
Rmult_0_r [lemma, in Coq.Reals.RIneq]
Rmult_pos [lemma, in Coq.Reals.ClassicalConstructiveReals]
rmul_reg_l [lemma, in Coq.setoid_ring.Field_theory]
Rmul_0_l [lemma, in Coq.setoid_ring.Ring_theory]
Rmul_ext [projection, in Coq.setoid_ring.Ring_theory]
Rmul_assoc [projection, in Coq.setoid_ring.Ring_theory]
Rmul_comm [projection, in Coq.setoid_ring.Ring_theory]
Rmul_1_l [projection, in Coq.setoid_ring.Ring_theory]
rmul:291 [binder, in Coq.setoid_ring.Ring_theory]
rmul:444 [binder, in Coq.setoid_ring.Field_theory]
Rnegate [definition, in Coq.micromega.RMicromega]
Rneq_0_1 [lemma, in Coq.micromega.OrderedRing]
Rneq_symm [lemma, in Coq.micromega.OrderedRing]
Rnext [constructor, in Coq.Logic.ConstructiveEpsilon]
Rnormalise [definition, in Coq.micromega.RMicromega]
Rnot_lt_ge [lemma, in Coq.Reals.RIneq]
Rnot_gt_ge [lemma, in Coq.Reals.RIneq]
Rnot_gt_le [lemma, in Coq.Reals.RIneq]
Rnot_lt_le [lemma, in Coq.Reals.RIneq]
Rnot_ge_lt [lemma, in Coq.Reals.RIneq]
Rnot_le_gt [lemma, in Coq.Reals.RIneq]
Rnot_ge_gt [lemma, in Coq.Reals.RIneq]
Rnot_le_lt [lemma, in Coq.Reals.RIneq]
rnz:145 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
rnz:149 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
rnz:151 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
rnz:277 [binder, in Coq.Reals.Abstract.ConstructiveReals]
rnz:71 [binder, in Coq.Reals.Abstract.ConstructiveReals]
rnz:74 [binder, in Coq.Reals.Abstract.ConstructiveReals]
Rolle [lemma, in Coq.Reals.MVT]
Ropp [abbreviation, in Coq.Reals.Rdefinitions]
ropp_neq_0 [lemma, in Coq.setoid_ring.Field_theory]
Ropp_neg_pos [lemma, in Coq.micromega.OrderedRing]
Ropp_pos_neg [lemma, in Coq.micromega.OrderedRing]
Ropp_lt_mono [lemma, in Coq.micromega.OrderedRing]
Ropp_Rmin [lemma, in Coq.Reals.Rbasic_fun]
Ropp_Rmax [lemma, in Coq.Reals.Rbasic_fun]
Ropp_opp [lemma, in Coq.setoid_ring.Ring_theory]
Ropp_add [lemma, in Coq.setoid_ring.Ring_theory]
Ropp_mul_l [lemma, in Coq.setoid_ring.Ring_theory]
Ropp_ext [projection, in Coq.setoid_ring.Ring_theory]
Ropp_def [projection, in Coq.setoid_ring.Ring_theory]
Ropp_div_den [abbreviation, in Coq.Reals.RIneq]
Ropp_div_den_depr [lemma, in Coq.Reals.RIneq]
Ropp_div [lemma, in Coq.Reals.RIneq]
Ropp_Ropp_IZR [definition, in Coq.Reals.RIneq]
Ropp_ge_cancel [lemma, in Coq.Reals.RIneq]
Ropp_le_cancel [lemma, in Coq.Reals.RIneq]
Ropp_gt_cancel [lemma, in Coq.Reals.RIneq]
Ropp_lt_cancel [lemma, in Coq.Reals.RIneq]
Ropp_0_ge_le_contravar [lemma, in Coq.Reals.RIneq]
Ropp_0_le_ge_contravar [lemma, in Coq.Reals.RIneq]
Ropp_gt_lt_0_contravar [lemma, in Coq.Reals.RIneq]
Ropp_lt_gt_0_contravar [lemma, in Coq.Reals.RIneq]
Ropp_0_gt_lt_contravar [lemma, in Coq.Reals.RIneq]
Ropp_0_lt_gt_contravar [lemma, in Coq.Reals.RIneq]
Ropp_ge_contravar [lemma, in Coq.Reals.RIneq]
Ropp_le_contravar [lemma, in Coq.Reals.RIneq]
Ropp_ge_le_contravar [lemma, in Coq.Reals.RIneq]
Ropp_le_ge_contravar [lemma, in Coq.Reals.RIneq]
Ropp_gt_contravar [lemma, in Coq.Reals.RIneq]
Ropp_lt_contravar [lemma, in Coq.Reals.RIneq]
Ropp_lt_gt_contravar [lemma, in Coq.Reals.RIneq]
Ropp_gt_lt_contravar [lemma, in Coq.Reals.RIneq]
Ropp_inv_permute [abbreviation, in Coq.Reals.RIneq]
Ropp_inv_permute_depr [lemma, in Coq.Reals.RIneq]
Ropp_minus_distr' [lemma, in Coq.Reals.RIneq]
Ropp_minus_distr [lemma, in Coq.Reals.RIneq]
Ropp_mult_distr_r_reverse [lemma, in Coq.Reals.RIneq]
Ropp_mult_distr_r [lemma, in Coq.Reals.RIneq]
Ropp_mult_distr_l_reverse [lemma, in Coq.Reals.RIneq]
Ropp_mult_distr_l [lemma, in Coq.Reals.RIneq]
Ropp_plus_distr [lemma, in Coq.Reals.RIneq]
Ropp_neq_0_compat [lemma, in Coq.Reals.RIneq]
Ropp_involutive [lemma, in Coq.Reals.RIneq]
Ropp_eq_0_compat [lemma, in Coq.Reals.RIneq]
Ropp_0 [lemma, in Coq.Reals.RIneq]
Ropp_eq_compat [lemma, in Coq.Reals.RIneq]
ropp:293 [binder, in Coq.setoid_ring.Ring_theory]
Rops [instance, in Coq.setoid_ring.Rings_R]
Rops [instance, in Coq.nsatz.Nsatz]
Rops_wd:165 [binder, in Coq.micromega.RingMicromega]
Rops_wd:161 [binder, in Coq.micromega.RingMicromega]
Rops_wd [definition, in Coq.micromega.RingMicromega]
rOp:191 [binder, in Coq.ssr.ssrfun]
ROrder [module, in Coq.Reals.ROrderedType]
ROrderedType [library]
ror_opt_cnf_cnf [lemma, in Coq.micromega.Tauto]
ror_cnf_cnf [lemma, in Coq.micromega.Tauto]
ror_clause_clause [lemma, in Coq.micromega.Tauto]
ror_cnf_opt [definition, in Coq.micromega.Tauto]
ror_cnf [definition, in Coq.micromega.Tauto]
ror_clause_cnf [definition, in Coq.micromega.Tauto]
ror_clause [definition, in Coq.micromega.Tauto]
rotation_PI2 [lemma, in Coq.Reals.Rgeom]
rotation_0 [lemma, in Coq.Reals.Rgeom]
round_nearest_even [definition, in Coq.Floats.SpecFloat]
rO:288 [binder, in Coq.setoid_ring.Ring_theory]
rO:441 [binder, in Coq.setoid_ring.Field_theory]
Ro:54 [binder, in Coq.Classes.RelationPairs]
Ro:81 [binder, in Coq.setoid_ring.Ncring]
Rplus [abbreviation, in Coq.Reals.Rdefinitions]
Rplus [inductive, in Coq.Sets.Relations_2]
Rplus_nonneg_nonneg [lemma, in Coq.micromega.OrderedRing]
Rplus_nonneg_pos [lemma, in Coq.micromega.OrderedRing]
Rplus_pos_nonneg [lemma, in Coq.micromega.OrderedRing]
Rplus_pos_pos [lemma, in Coq.micromega.OrderedRing]
Rplus_le_lt_mono [lemma, in Coq.micromega.OrderedRing]
Rplus_lt_le_mono [lemma, in Coq.micromega.OrderedRing]
Rplus_le_mono [lemma, in Coq.micromega.OrderedRing]
Rplus_lt_mono [lemma, in Coq.micromega.OrderedRing]
Rplus_lt_mono_r [lemma, in Coq.micromega.OrderedRing]
Rplus_lt_mono_l [lemma, in Coq.micromega.OrderedRing]
Rplus_le_mono_r [lemma, in Coq.micromega.OrderedRing]
Rplus_le_mono_l [lemma, in Coq.micromega.OrderedRing]
Rplus_cancel_l [lemma, in Coq.micromega.OrderedRing]
Rplus_comm [lemma, in Coq.micromega.OrderedRing]
Rplus_0_r [lemma, in Coq.micromega.OrderedRing]
Rplus_0_l [lemma, in Coq.micromega.OrderedRing]
Rplus_lt_compat_l [lemma, in Coq.Reals.Raxioms]
Rplus_0_l [lemma, in Coq.Reals.Raxioms]
Rplus_opp_r [lemma, in Coq.Reals.Raxioms]
Rplus_assoc [lemma, in Coq.Reals.Raxioms]
Rplus_comm [lemma, in Coq.Reals.Raxioms]
Rplus_contains_R [lemma, in Coq.Sets.Relations_2_facts]
Rplus_lt_pos [abbreviation, in Coq.Reals.DiscrR]
Rplus_n [constructor, in Coq.Sets.Relations_2]
Rplus_0 [constructor, in Coq.Sets.Relations_2]
Rplus_sqr_eq_0 [lemma, in Coq.Reals.RIneq]
Rplus_sqr_eq_0_l [lemma, in Coq.Reals.RIneq]
Rplus_gt_reg_neg_r [lemma, in Coq.Reals.RIneq]
Rplus_ge_reg_neg_r [lemma, in Coq.Reals.RIneq]
Rplus_lt_reg_pos_r [lemma, in Coq.Reals.RIneq]
Rplus_le_reg_pos_r [lemma, in Coq.Reals.RIneq]
Rplus_ge_reg_l [lemma, in Coq.Reals.RIneq]
Rplus_gt_reg_l [lemma, in Coq.Reals.RIneq]
Rplus_le_reg_r [lemma, in Coq.Reals.RIneq]
Rplus_le_reg_l [lemma, in Coq.Reals.RIneq]
Rplus_lt_reg_r [lemma, in Coq.Reals.RIneq]
Rplus_lt_reg_l [lemma, in Coq.Reals.RIneq]
Rplus_le_le_0_compat [lemma, in Coq.Reals.RIneq]
Rplus_lt_le_0_compat [lemma, in Coq.Reals.RIneq]
Rplus_le_lt_0_compat [lemma, in Coq.Reals.RIneq]
Rplus_lt_0_compat [lemma, in Coq.Reals.RIneq]
Rplus_ge_gt_compat [lemma, in Coq.Reals.RIneq]
Rplus_gt_ge_compat [lemma, in Coq.Reals.RIneq]
Rplus_le_lt_compat [lemma, in Coq.Reals.RIneq]
Rplus_lt_le_compat [lemma, in Coq.Reals.RIneq]
Rplus_ge_compat [lemma, in Coq.Reals.RIneq]
Rplus_gt_compat [lemma, in Coq.Reals.RIneq]
Rplus_le_compat [lemma, in Coq.Reals.RIneq]
Rplus_lt_compat [lemma, in Coq.Reals.RIneq]
Rplus_ge_compat_r [lemma, in Coq.Reals.RIneq]
Rplus_le_compat_r [lemma, in Coq.Reals.RIneq]
Rplus_ge_compat_l [lemma, in Coq.Reals.RIneq]
Rplus_le_compat_l [lemma, in Coq.Reals.RIneq]
Rplus_gt_compat_r [lemma, in Coq.Reals.RIneq]
Rplus_lt_compat_r [lemma, in Coq.Reals.RIneq]
Rplus_gt_compat_l [lemma, in Coq.Reals.RIneq]
Rplus_minus [lemma, in Coq.Reals.RIneq]
Rplus_eq_R0 [lemma, in Coq.Reals.RIneq]
Rplus_eq_0_l [lemma, in Coq.Reals.RIneq]
Rplus_0_r_uniq [lemma, in Coq.Reals.RIneq]
Rplus_eq_reg_r [lemma, in Coq.Reals.RIneq]
Rplus_eq_reg_l [lemma, in Coq.Reals.RIneq]
Rplus_eq_compat_r [lemma, in Coq.Reals.RIneq]
Rplus_eq_compat_l [lemma, in Coq.Reals.RIneq]
Rplus_opp_r_uniq [lemma, in Coq.Reals.RIneq]
Rplus_opp_l [lemma, in Coq.Reals.RIneq]
Rplus_ne [lemma, in Coq.Reals.RIneq]
Rplus_0_r [lemma, in Coq.Reals.RIneq]
Rplus_le_pos [lemma, in Coq.Reals.Abstract.ConstructiveSum]
Rplus_reg_l [lemma, in Coq.Reals.ClassicalConstructiveReals]
Rpower [definition, in Coq.Reals.Rpower]
Rpower [library]
Rpower_mult_distr [lemma, in Coq.Reals.Rpower]
Rpower_Ropp [lemma, in Coq.Reals.Rpower]
Rpower_sqrt [lemma, in Coq.Reals.Rpower]
Rpower_Rlog [lemma, in Coq.Reals.Rpower]
Rpower_lt [lemma, in Coq.Reals.Rpower]
Rpower_nonzero [lemma, in Coq.Reals.Rpower]
Rpower_pow [lemma, in Coq.Reals.Rpower]
Rpower_1 [lemma, in Coq.Reals.Rpower]
Rpower_O [lemma, in Coq.Reals.Rpower]
Rpower_mult [lemma, in Coq.Reals.Rpower]
Rpower_plus [lemma, in Coq.Reals.Rpower]
RPow_abs [lemma, in Coq.Reals.Rfunctions]
Rpow_mult_distr [lemma, in Coq.Reals.Rfunctions]
rpow_pow_N [projection, in Coq.setoid_ring.Ncring_polynom]
rpow_pow_N [projection, in Coq.setoid_ring.Ring_theory]
Rpow_def [library]
Rprod [library]
rP:195 [binder, in Coq.ssr.ssrfun]
rP:202 [binder, in Coq.ssr.ssrfun]
rP:410 [binder, in Coq.setoid_ring.Ring_polynom]
rP:417 [binder, in Coq.setoid_ring.Ring_polynom]
rP:425 [binder, in Coq.setoid_ring.Ring_polynom]
rP:432 [binder, in Coq.setoid_ring.Ring_polynom]
rP:462 [binder, in Coq.setoid_ring.Ring_polynom]
rP:469 [binder, in Coq.setoid_ring.Ring_polynom]
rq:54 [binder, in Coq.Logic.ConstructiveEpsilon]
rq:58 [binder, in Coq.Logic.ConstructiveEpsilon]
rrefl [lemma, in Coq.ssr.ssrfun]
Rregisternames [library]
Rrepr_appart_0 [lemma, in Coq.Reals.Rdefinitions]
Rrepr_IZR [lemma, in Coq.Reals.Raxioms]
Rrepr_IPR [lemma, in Coq.Reals.Raxioms]
Rrepr_IPR2 [lemma, in Coq.Reals.Raxioms]
Rrepr_INR [lemma, in Coq.Reals.Raxioms]
Rrepr_appart [lemma, in Coq.Reals.Raxioms]
Rrepr_le [lemma, in Coq.Reals.Raxioms]
Rrepr_inv [lemma, in Coq.Reals.Raxioms]
Rrepr_mult [lemma, in Coq.Reals.Raxioms]
Rrepr_minus [lemma, in Coq.Reals.Raxioms]
Rrepr_opp [lemma, in Coq.Reals.Raxioms]
Rrepr_plus [lemma, in Coq.Reals.Raxioms]
Rrepr_1 [lemma, in Coq.Reals.Raxioms]
Rrepr_0 [lemma, in Coq.Reals.Raxioms]
Rrepr_morphism [definition, in Coq.Reals.ClassicalConstructiveReals]
Rri [instance, in Coq.setoid_ring.Rings_R]
Rri [instance, in Coq.nsatz.Nsatz]
Rring [lemma, in Coq.Reals.ClassicalConstructiveReals]
RringExt [lemma, in Coq.Reals.ClassicalConstructiveReals]
RRle_abs [definition, in Coq.Reals.Rbasic_fun]
Rr:10 [binder, in Coq.setoid_ring.Cring]
Rr:170 [binder, in Coq.setoid_ring.Ncring]
rR:198 [binder, in Coq.ssr.ssrfun]
Rr:198 [binder, in Coq.setoid_ring.Ncring]
rR:205 [binder, in Coq.ssr.ssrfun]
Rr:209 [binder, in Coq.setoid_ring.Ncring_tac]
Rr:219 [binder, in Coq.setoid_ring.Ncring_tac]
Rr:234 [binder, in Coq.setoid_ring.Ncring_tac]
Rr:249 [binder, in Coq.setoid_ring.Ncring_tac]
Rr:262 [binder, in Coq.setoid_ring.Ncring_tac]
Rr:27 [binder, in Coq.setoid_ring.Cring]
Rr:30 [binder, in Coq.setoid_ring.Ncring_tac]
rr:348 [binder, in Coq.MSets.MSetRBT]
rr:358 [binder, in Coq.MSets.MSetRBT]
rr:63 [binder, in Coq.MSets.MSetAVL]
rr:76 [binder, in Coq.FSets.FMapAVL]
Rsepare [lemma, in Coq.Reals.Rtopology]
Rseries [library]
Rseries_CV_comp [lemma, in Coq.Reals.SeqSeries]
Rset [abbreviation, in Coq.setoid_ring.RealField]
Rset [lemma, in Coq.nsatz.NsatzTactic]
Rsigma [library]
Rsor [lemma, in Coq.micromega.RMicromega]
rsplit [record, in Coq.setoid_ring.Field_theory]
rsplit_right [projection, in Coq.setoid_ring.Field_theory]
rsplit_common [projection, in Coq.setoid_ring.Field_theory]
rsplit_left [projection, in Coq.setoid_ring.Field_theory]
Rsqr [definition, in Coq.Reals.RIneq]
Rsqrt [definition, in Coq.Reals.Rsqrt_def]
Rsqrt_Rsqrt [lemma, in Coq.Reals.Rsqrt_def]
Rsqrt_positivity [lemma, in Coq.Reals.Rsqrt_def]
Rsqrt_exists [lemma, in Coq.Reals.Rsqrt_def]
Rsqrt_def [library]
Rsqr_pow2 [lemma, in Coq.Reals.Rfunctions]
Rsqr_sol_eq_0_0 [lemma, in Coq.Reals.R_sqrt]
Rsqr_sol_eq_0_1 [lemma, in Coq.Reals.R_sqrt]
Rsqr_sqrt [lemma, in Coq.Reals.R_sqrt]
Rsqr_0_uniq [lemma, in Coq.Reals.RIneq]
Rsqr_0 [lemma, in Coq.Reals.RIneq]
Rsqr_sin_cos_d_one [lemma, in Coq.Reals.Rtrigo_calc]
Rsqr_eq [lemma, in Coq.Reals.R_sqr]
Rsqr_inv [abbreviation, in Coq.Reals.R_sqr]
Rsqr_inv_depr [lemma, in Coq.Reals.R_sqr]
Rsqr_inv' [lemma, in Coq.Reals.R_sqr]
Rsqr_eq_asb_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_eq_abs_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_inj [lemma, in Coq.Reals.R_sqr]
Rsqr_lt_abs_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_lt_abs_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_le_abs_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_le_abs_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_abs [lemma, in Coq.Reals.R_sqr]
Rsqr_bounds_lt [lemma, in Coq.Reals.R_sqr]
Rsqr_bounds_le [lemma, in Coq.Reals.R_sqr]
Rsqr_neg_pos_le_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_neg_pos_le_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_incrst_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_incrst_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_incr_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_incr_0_var [lemma, in Coq.Reals.R_sqr]
Rsqr_incr_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_plus_minus [lemma, in Coq.Reals.R_sqr]
Rsqr_minus_plus [lemma, in Coq.Reals.R_sqr]
Rsqr_eq_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_div [abbreviation, in Coq.Reals.R_sqr]
Rsqr_div_depr [lemma, in Coq.Reals.R_sqr]
Rsqr_div' [lemma, in Coq.Reals.R_sqr]
Rsqr_pos_lt [lemma, in Coq.Reals.R_sqr]
Rsqr_gt_0_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_neg_minus [lemma, in Coq.Reals.R_sqr]
Rsqr_minus [lemma, in Coq.Reals.R_sqr]
Rsqr_plus [lemma, in Coq.Reals.R_sqr]
Rsqr_mult [lemma, in Coq.Reals.R_sqr]
Rsqr_neg [lemma, in Coq.Reals.R_sqr]
Rsrt [definition, in Coq.micromega.RMicromega]
Rstar [inductive, in Coq.Sets.Relations_2]
RstarRplus_RRstar [lemma, in Coq.Sets.Relations_2_facts]
Rstar_equiv_Rstar1 [lemma, in Coq.Sets.Relations_2_facts]
Rstar_cases [lemma, in Coq.Sets.Relations_2_facts]
Rstar_transitive [lemma, in Coq.Sets.Relations_2_facts]
Rstar_contains_Rplus [lemma, in Coq.Sets.Relations_2_facts]
Rstar_contains_R [lemma, in Coq.Sets.Relations_2_facts]
Rstar_reflexive [lemma, in Coq.Sets.Relations_2_facts]
Rstar_n [constructor, in Coq.Sets.Relations_2]
Rstar_0 [constructor, in Coq.Sets.Relations_2]
Rstar_imp_coherent [lemma, in Coq.Sets.Relations_3_facts]
Rstar1 [inductive, in Coq.Sets.Relations_2]
Rstar1_n [constructor, in Coq.Sets.Relations_2]
Rstar1_1 [constructor, in Coq.Sets.Relations_2]
Rstar1_0 [constructor, in Coq.Sets.Relations_2]
Rsth [lemma, in Coq.setoid_ring.Rings_R]
Rsth [lemma, in Coq.nsatz.Nsatz]
Rsth:448 [binder, in Coq.setoid_ring.Field_theory]
rstn1_trans [constructor, in Coq.Relations.Relation_Operators]
rstn1_refl [constructor, in Coq.Relations.Relation_Operators]
Rstop [constructor, in Coq.Logic.ConstructiveEpsilon]
rst_f':221 [binder, in Coq.micromega.Tauto]
rst_trans [constructor, in Coq.Relations.Relation_Operators]
rst_sym [constructor, in Coq.Relations.Relation_Operators]
rst_refl [constructor, in Coq.Relations.Relation_Operators]
rst_step [constructor, in Coq.Relations.Relation_Operators]
rst1n_trans [constructor, in Coq.Relations.Relation_Operators]
rst1n_refl [constructor, in Coq.Relations.Relation_Operators]
rsub_0_r [lemma, in Coq.setoid_ring.Field_theory]
rsub_0_l [lemma, in Coq.setoid_ring.Field_theory]
Rsub_def [projection, in Coq.setoid_ring.Ring_theory]
rsub:292 [binder, in Coq.setoid_ring.Ring_theory]
Rsum_abs [lemma, in Coq.Reals.PartSum]
Rsym_imp_notRsym [lemma, in Coq.Sets.Relations_1_facts]
Rsym_imp_Rstarsym [lemma, in Coq.Sets.Relations_2_facts]
Rtail [definition, in Coq.Reals.RList]
Rtauto [library]
RTautoChecker [definition, in Coq.micromega.RMicromega]
RTautoChecker_sound [lemma, in Coq.micromega.RMicromega]
RTheory [lemma, in Coq.setoid_ring.RealField]
Rtheory [definition, in Coq.nsatz.NsatzTactic]
Rth_ARth [lemma, in Coq.setoid_ring.Ring_theory]
Rtimes_neq_0 [lemma, in Coq.micromega.OrderedRing]
Rtimes_square_nonneg [lemma, in Coq.micromega.OrderedRing]
Rtimes_neg_neg [lemma, in Coq.micromega.OrderedRing]
Rtimes_pos_neg [lemma, in Coq.micromega.OrderedRing]
Rtimes_nonneg_nonneg [lemma, in Coq.micromega.OrderedRing]
Rtimes_pos_pos [lemma, in Coq.micromega.OrderedRing]
Rtimes_comm [lemma, in Coq.micromega.OrderedRing]
Rtimes_0_l [lemma, in Coq.micromega.OrderedRing]
Rtimes_0_r [lemma, in Coq.micromega.OrderedRing]
rtn1_trans_equiv [abbreviation, in Coq.Relations.Operators_Properties]
rtn1_trans [abbreviation, in Coq.Relations.Operators_Properties]
rtn1_trans [constructor, in Coq.Relations.Relation_Operators]
rtn1_refl [constructor, in Coq.Relations.Relation_Operators]
Rtopology [library]
Rtotal_order [lemma, in Coq.Reals.RIneq]
Rtrigo [library]
Rtrigo_alt [library]
Rtrigo_def [library]
Rtrigo_fun [library]
Rtrigo_calc [library]
Rtrigo_reg [library]
Rtrigo_facts [library]
Rtrigo1 [library]
rtsn1_sym [abbreviation, in Coq.Relations.Operators_Properties]
rtsn1_trans [abbreviation, in Coq.Relations.Operators_Properties]
rtsn1_rts [abbreviation, in Coq.Relations.Operators_Properties]
rtsn1_trans [abbreviation, in Coq.Relations.Relation_Operators]
rtsn1_refl [abbreviation, in Coq.Relations.Relation_Operators]
rts_rtsn1_equiv [abbreviation, in Coq.Relations.Operators_Properties]
rts_rtsn1 [abbreviation, in Coq.Relations.Operators_Properties]
rts_rts1n_equiv [abbreviation, in Coq.Relations.Operators_Properties]
rts_rts1n [abbreviation, in Coq.Relations.Operators_Properties]
rts_1n_trans [abbreviation, in Coq.Relations.Operators_Properties]
rts1n_sym [abbreviation, in Coq.Relations.Operators_Properties]
rts1n_rts [abbreviation, in Coq.Relations.Operators_Properties]
rts1n_trans [abbreviation, in Coq.Relations.Relation_Operators]
rts1n_refl [abbreviation, in Coq.Relations.Relation_Operators]
rtyp [definition, in Coq.micromega.Tauto]
rt_trans [constructor, in Coq.Relations.Relation_Operators]
rt_refl [constructor, in Coq.Relations.Relation_Operators]
rt_step [constructor, in Coq.Relations.Relation_Operators]
rt1n_trans_equiv [abbreviation, in Coq.Relations.Operators_Properties]
rt1n_trans [abbreviation, in Coq.Relations.Operators_Properties]
rt1n_ind_right [lemma, in Coq.Relations.Operators_Properties]
rt1n_trans [constructor, in Coq.Relations.Relation_Operators]
rt1n_refl [constructor, in Coq.Relations.Relation_Operators]
rT:12 [binder, in Coq.ssr.ssrfun]
rT:20 [binder, in Coq.ssr.ssrfun]
rT:23 [binder, in Coq.ssr.ssrfun]
rT:308 [binder, in Coq.ssr.ssrbool]
rT:346 [binder, in Coq.ssr.ssrbool]
rT:38 [binder, in Coq.ssr.ssrfun]
rT:39 [binder, in Coq.ssr.ssreflect]
rT:59 [binder, in Coq.ssr.ssrfun]
rT:617 [binder, in Coq.ssr.ssrbool]
rT:623 [binder, in Coq.ssr.ssrbool]
rT:64 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
rt:89 [binder, in Coq.FSets.FSetPositive]
rt:89 [binder, in Coq.MSets.MSetPositive]
Runcountable [library]
runsat [definition, in Coq.micromega.RMicromega]
Rup_pos [lemma, in Coq.Reals.Cauchy.ConstructiveRcomplete]
Rup_nat [definition, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
rU:45 [binder, in Coq.Logic.Berardi]
RWeakChecker [definition, in Coq.micromega.RMicromega]
RWeakChecker_sound [lemma, in Coq.micromega.RMicromega]
Rwf:125 [binder, in Coq.Program.Wf]
RWitness [definition, in Coq.micromega.RMicromega]
rwP [lemma, in Coq.ssr.ssrbool]
rwP2 [lemma, in Coq.ssr.ssrbool]
rxcnf [definition, in Coq.micromega.Tauto]
rxcnf_xcnf [lemma, in Coq.micromega.Tauto]
rxcnf_iff_xcnf [lemma, in Coq.micromega.Tauto]
rxcnf_impl_xcnf [lemma, in Coq.micromega.Tauto]
rxcnf_or_xcnf [lemma, in Coq.micromega.Tauto]
rxcnf_and_xcnf [lemma, in Coq.micromega.Tauto]
rxcnf_iff [definition, in Coq.micromega.Tauto]
rxcnf_impl [definition, in Coq.micromega.Tauto]
rxcnf_or [definition, in Coq.micromega.Tauto]
rxcnf_and [definition, in Coq.micromega.Tauto]
rxnz:160 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
rxnz:313 [binder, in Coq.Reals.Abstract.ConstructiveReals]
rx:347 [binder, in Coq.MSets.MSetRBT]
rx:357 [binder, in Coq.MSets.MSetRBT]
rynz:161 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
rynz:314 [binder, in Coq.Reals.Abstract.ConstructiveReals]
Rzero_lt_one [lemma, in Coq.Reals.ClassicalConstructiveReals]
R_rt1n [abbreviation, in Coq.Relations.Operators_Properties]
R_rtn1 [abbreviation, in Coq.Relations.Operators_Properties]
R_power_theory [lemma, in Coq.setoid_ring.RealField]
R_uncountable [lemma, in Coq.Reals.Runcountable]
R_power_theory [lemma, in Coq.nsatz.NsatzTactic]
R_dist_mult_l [lemma, in Coq.Reals.Rfunctions]
R_dist_plus [lemma, in Coq.Reals.Rfunctions]
R_dist_tri [lemma, in Coq.Reals.Rfunctions]
R_dist_eq [lemma, in Coq.Reals.Rfunctions]
R_dist_refl [lemma, in Coq.Reals.Rfunctions]
R_dist_sym [lemma, in Coq.Reals.Rfunctions]
R_dist_pos [lemma, in Coq.Reals.Rfunctions]
R_dist [definition, in Coq.Reals.Rfunctions]
r_list_pow_rev [lemma, in Coq.setoid_ring.Ring_polynom]
r_list_pow [definition, in Coq.setoid_ring.Ring_polynom]
R_one_zero [lemma, in Coq.setoid_ring.Rings_R]
R_one_zero [lemma, in Coq.nsatz.Nsatz]
R_sanity [lemma, in Coq.Vectors.Fin]
R_met [definition, in Coq.Reals.Rlimit]
R_rm [lemma, in Coq.Reals.RIneq]
R_of_Rcst [definition, in Coq.micromega.RMicromega]
R_as_OT.compare_spec [definition, in Coq.Reals.ROrderedType]
R_as_OT.le_lteq [lemma, in Coq.Reals.ROrderedType]
R_as_OT.lt_compat [instance, in Coq.Reals.ROrderedType]
R_as_OT.lt_strorder [instance, in Coq.Reals.ROrderedType]
R_as_OT.compare [definition, in Coq.Reals.ROrderedType]
R_as_OT.le [definition, in Coq.Reals.ROrderedType]
R_as_OT.lt [definition, in Coq.Reals.ROrderedType]
R_as_OT [module, in Coq.Reals.ROrderedType]
R_as_DT [module, in Coq.Reals.ROrderedType]
R_as_UBE.eqb_eq [definition, in Coq.Reals.ROrderedType]
R_as_UBE.eqb [definition, in Coq.Reals.ROrderedType]
R_as_UBE.eq [definition, in Coq.Reals.ROrderedType]
R_as_UBE.t [definition, in Coq.Reals.ROrderedType]
R_as_UBE [module, in Coq.Reals.ROrderedType]
r_refl [constructor, in Coq.Relations.Relation_Operators]
r_step [constructor, in Coq.Relations.Relation_Operators]
R_complete [lemma, in Coq.Reals.Rcomplete]
R_Ifp [library]
R_sqrt [library]
R_sqr [library]
R''':179 [binder, in Coq.Classes.Morphisms]
R''':191 [binder, in Coq.Classes.CMorphisms]
R'':182 [binder, in Coq.Classes.Morphisms]
R'':195 [binder, in Coq.Classes.CMorphisms]
r':100 [binder, in Coq.ZArith.BinIntDef]
R':104 [binder, in Coq.Logic.ChoiceFacts]
R':12 [binder, in Coq.Sets.Relations_1]
R':120 [binder, in Coq.Logic.ChoiceFacts]
R':120 [binder, in Coq.Classes.CRelationClasses]
R':124 [binder, in Coq.Classes.CRelationClasses]
R':128 [binder, in Coq.Classes.CRelationClasses]
R':132 [binder, in Coq.Classes.CMorphisms]
R':135 [binder, in Coq.Classes.Morphisms]
R':138 [binder, in Coq.Classes.Morphisms]
R':139 [binder, in Coq.Classes.RelationClasses]
R':140 [binder, in Coq.Classes.CMorphisms]
R':141 [binder, in Coq.Classes.RelationClasses]
R':144 [binder, in Coq.Classes.Morphisms]
R':145 [binder, in Coq.Classes.Morphisms]
R':148 [binder, in Coq.Classes.RelationClasses]
R':149 [binder, in Coq.Classes.Morphisms]
R':15 [binder, in Coq.Sets.Relations_3_facts]
R':150 [binder, in Coq.Classes.RelationClasses]
R':152 [binder, in Coq.Classes.CMorphisms]
r':153 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
R':154 [binder, in Coq.Classes.CMorphisms]
R':159 [binder, in Coq.Classes.CMorphisms]
R':16 [binder, in Coq.Sets.Relations_1]
R':164 [binder, in Coq.Classes.RelationClasses]
R':166 [binder, in Coq.Classes.RelationClasses]
R':181 [binder, in Coq.Classes.Morphisms]
R':19 [binder, in Coq.Sets.Relations_1_facts]
R':194 [binder, in Coq.Classes.CMorphisms]
R':20 [binder, in Coq.Classes.CEquivalence]
R':20 [binder, in Coq.Classes.Equivalence]
R':210 [binder, in Coq.Classes.Morphisms]
R':22 [binder, in Coq.Sets.Relations_1_facts]
R':228 [binder, in Coq.Classes.CMorphisms]
R':236 [binder, in Coq.Classes.CMorphisms]
R':24 [binder, in Coq.Classes.CMorphisms]
r':241 [binder, in Coq.ZArith.Zdiv]
r':243 [binder, in Coq.ZArith.Zdiv]
R':25 [binder, in Coq.Sets.Relations_1_facts]
R':27 [binder, in Coq.Classes.CEquivalence]
R':27 [binder, in Coq.Classes.Equivalence]
R':28 [binder, in Coq.Sets.Relations_1_facts]
R':33 [binder, in Coq.Classes.CMorphisms]
R':34 [binder, in Coq.Classes.Morphisms]
R':390 [binder, in Coq.Init.Logic]
r':40 [binder, in Coq.Numbers.DecimalFacts]
r':40 [binder, in Coq.Numbers.HexadecimalFacts]
R':42 [binder, in Coq.Classes.Morphisms]
R':5 [binder, in Coq.Numbers.Cyclic.Int63.Ring63]
R':5 [binder, in Coq.Numbers.Cyclic.Int31.Ring31]
R':6 [binder, in Coq.Logic.RelationalChoice]
R':60 [binder, in Coq.Classes.RelationClasses]
R':62 [binder, in Coq.Classes.CMorphisms]
r':63 [binder, in Coq.NArith.BinNatDef]
r':66 [binder, in Coq.NArith.BinNatDef]
R':69 [binder, in Coq.Classes.CRelationClasses]
R':7 [binder, in Coq.Logic.ChoiceFacts]
R':70 [binder, in Coq.Classes.CMorphisms]
R':79 [binder, in Coq.Classes.Morphisms]
R':83 [binder, in Coq.Classes.CMorphisms]
R':86 [binder, in Coq.Classes.Morphisms]
r':91 [binder, in Coq.PArith.BinPosDef]
r':92 [binder, in Coq.MSets.MSetAVL]
r':97 [binder, in Coq.ZArith.BinIntDef]
R':99 [binder, in Coq.Classes.Morphisms]
R.minus_min_distr_r [lemma, in Coq.Reals.Rminmax]
R.minus_min_distr_l [lemma, in Coq.Reals.Rminmax]
R.minus_max_distr_r [lemma, in Coq.Reals.Rminmax]
R.minus_max_distr_l [lemma, in Coq.Reals.Rminmax]
R.opp_min_distr [lemma, in Coq.Reals.Rminmax]
R.opp_max_distr [lemma, in Coq.Reals.Rminmax]
R.plus_min_distr_r [lemma, in Coq.Reals.Rminmax]
R.plus_min_distr_l [lemma, in Coq.Reals.Rminmax]
R.plus_max_distr_r [lemma, in Coq.Reals.Rminmax]
R.plus_max_distr_l [lemma, in Coq.Reals.Rminmax]
R0 [abbreviation, in Coq.Reals.Rdefinitions]
R0_fp_O [lemma, in Coq.Reals.R_Ifp]
r0:114 [binder, in Coq.Reals.RList]
R0:170 [binder, in Coq.Classes.Morphisms]
R0:183 [binder, in Coq.Classes.CMorphisms]
r0:195 [binder, in Coq.Reals.RiemannInt_SF]
r0:197 [binder, in Coq.Reals.RiemannInt_SF]
r0:217 [binder, in Coq.Reals.RiemannInt_SF]
r0:219 [binder, in Coq.Reals.RiemannInt_SF]
R1 [abbreviation, in Coq.Reals.Rdefinitions]
r1nz:155 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1nz:307 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R1_neq_R0 [lemma, in Coq.Reals.Raxioms]
R1_sqrt2_neq_0 [lemma, in Coq.Reals.Rtrigo_calc]
r1:1 [binder, in Coq.Reals.ROrderedType]
R1:1 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R1:10 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:102 [binder, in Coq.Reals.RIneq]
R1:102 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:103 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:105 [binder, in Coq.Reals.RIneq]
R1:107 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:108 [binder, in Coq.Reals.RIneq]
r1:11 [binder, in Coq.Reals.RIneq]
r1:110 [binder, in Coq.Reals.RIneq]
r1:112 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:112 [binder, in Coq.Reals.RIneq]
R1:112 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R1:112 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:114 [binder, in Coq.Reals.RIneq]
r1:114 [binder, in Coq.Reals.RiemannInt_SF]
r1:116 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:116 [binder, in Coq.Reals.RIneq]
r1:117 [binder, in Coq.Reals.RList]
r1:118 [binder, in Coq.Reals.RIneq]
R1:118 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:12 [binder, in Coq.Reals.Rbasic_fun]
r1:12 [binder, in Coq.Numbers.NatInt.NZDiv]
r1:120 [binder, in Coq.Reals.RIneq]
r1:122 [binder, in Coq.Reals.RIneq]
R1:123 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:124 [binder, in Coq.Reals.RIneq]
r1:126 [binder, in Coq.Reals.RIneq]
r1:128 [binder, in Coq.Reals.RIneq]
R1:129 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:13 [binder, in Coq.Reals.RIneq]
r1:13 [binder, in Coq.micromega.RMicromega]
r1:130 [binder, in Coq.Reals.RIneq]
r1:132 [binder, in Coq.Reals.RIneq]
r1:132 [binder, in Coq.Reals.RiemannInt_SF]
r1:134 [binder, in Coq.Reals.RIneq]
R1:135 [binder, in Coq.setoid_ring.Ring_polynom]
r1:14 [binder, in Coq.Reals.R_Ifp]
r1:14 [binder, in Coq.Numbers.Integer.Abstract.ZDivTrunc]
r1:141 [binder, in Coq.Reals.RIneq]
R1:142 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:144 [binder, in Coq.Reals.RIneq]
R1:145 [binder, in Coq.micromega.EnvRing]
R1:146 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:147 [binder, in Coq.Reals.RIneq]
R1:149 [binder, in Coq.micromega.EnvRing]
r1:15 [binder, in Coq.Reals.Rbasic_fun]
r1:15 [binder, in Coq.Reals.RIneq]
r1:15 [binder, in Coq.micromega.RMicromega]
R1:15 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R1:150 [binder, in Coq.setoid_ring.Ring_polynom]
R1:151 [binder, in Coq.micromega.EnvRing]
r1:151 [binder, in Coq.Reals.SeqProp]
r1:152 [binder, in Coq.Reals.RIneq]
R1:153 [binder, in Coq.micromega.EnvRing]
r1:153 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R1:153 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R1:154 [binder, in Coq.setoid_ring.Ring_polynom]
r1:155 [binder, in Coq.Reals.RIneq]
R1:156 [binder, in Coq.setoid_ring.Ring_polynom]
R1:158 [binder, in Coq.setoid_ring.Ring_polynom]
r1:158 [binder, in Coq.Reals.RIneq]
r1:159 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R1:159 [binder, in Coq.micromega.EnvRing]
r1:159 [binder, in Coq.Reals.RIneq]
r1:16 [binder, in Coq.Reals.R_Ifp]
r1:16 [binder, in Coq.Reals.Raxioms]
r1:16 [binder, in Coq.Numbers.NatInt.NZDiv]
r1:161 [binder, in Coq.Reals.RIneq]
r1:161 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r1:163 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:163 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r1:163 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R1:165 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R1:166 [binder, in Coq.setoid_ring.Ring_polynom]
r1:166 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:167 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:167 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r1:169 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:17 [binder, in Coq.Reals.RIneq]
r1:17 [binder, in Coq.micromega.RMicromega]
r1:171 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R1:171 [binder, in Coq.Classes.Morphisms]
r1:171 [binder, in Coq.Reals.RIneq]
r1:172 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:174 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:174 [binder, in Coq.Reals.RIneq]
r1:175 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:177 [binder, in Coq.Reals.RIneq]
r1:18 [binder, in Coq.Reals.R_Ifp]
r1:18 [binder, in Coq.Reals.Raxioms]
r1:18 [binder, in Coq.Reals.ClassicalConstructiveReals]
r1:180 [binder, in Coq.Reals.RIneq]
r1:180 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r1:182 [binder, in Coq.Reals.RIneq]
r1:182 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r1:183 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R1:183 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R1:184 [binder, in Coq.Classes.CMorphisms]
r1:184 [binder, in Coq.Reals.RIneq]
R1:185 [binder, in Coq.Classes.Morphisms]
r1:185 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r1:186 [binder, in Coq.Reals.RIneq]
r1:187 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:187 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
R1:187 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:188 [binder, in Coq.Reals.RIneq]
r1:188 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R1:189 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:19 [binder, in Coq.Reals.RIneq]
r1:19 [binder, in Coq.micromega.RMicromega]
r1:190 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:190 [binder, in Coq.Reals.RIneq]
R1:192 [binder, in Coq.Classes.Morphisms]
r1:192 [binder, in Coq.Reals.RIneq]
R1:193 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:194 [binder, in Coq.Reals.RIneq]
r1:195 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:196 [binder, in Coq.Reals.RIneq]
R1:197 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R1:198 [binder, in Coq.Classes.CMorphisms]
r1:20 [binder, in Coq.Reals.R_Ifp]
r1:20 [binder, in Coq.Numbers.NatInt.NZDiv]
r1:201 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:201 [binder, in Coq.Reals.RIneq]
R1:201 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:202 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:205 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R1:205 [binder, in Coq.Classes.CMorphisms]
r1:205 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:206 [binder, in Coq.Reals.RIneq]
R1:207 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:208 [binder, in Coq.Reals.RIneq]
r1:209 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:21 [binder, in Coq.Reals.RIneq]
r1:210 [binder, in Coq.Reals.RIneq]
r1:212 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:212 [binder, in Coq.Reals.RIneq]
r1:214 [binder, in Coq.Reals.RIneq]
r1:216 [binder, in Coq.Reals.RIneq]
r1:22 [binder, in Coq.Reals.R_Ifp]
r1:22 [binder, in Coq.Reals.PSeries_reg]
r1:220 [binder, in Coq.Reals.RIneq]
r1:222 [binder, in Coq.Reals.RIneq]
r1:224 [binder, in Coq.Reals.RIneq]
r1:225 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:227 [binder, in Coq.Reals.RIneq]
r1:228 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:229 [binder, in Coq.Reals.RIneq]
r1:23 [binder, in Coq.Reals.Raxioms]
r1:23 [binder, in Coq.Reals.RIneq]
R1:23 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:231 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:231 [binder, in Coq.Reals.RIneq]
r1:233 [binder, in Coq.Reals.RIneq]
r1:234 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:235 [binder, in Coq.Reals.RIneq]
r1:237 [binder, in Coq.Reals.RIneq]
r1:239 [binder, in Coq.Reals.RIneq]
R1:239 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r1:24 [binder, in Coq.Reals.R_Ifp]
r1:242 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:242 [binder, in Coq.Reals.RIneq]
r1:245 [binder, in Coq.setoid_ring.Field_theory]
R1:245 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r1:248 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:248 [binder, in Coq.Reals.RIneq]
R1:249 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r1:25 [binder, in Coq.Reals.Raxioms]
r1:25 [binder, in Coq.Reals.RIneq]
R1:25 [binder, in Coq.Relations.Relation_Definitions]
r1:250 [binder, in Coq.Reals.RIneq]
r1:252 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:256 [binder, in Coq.Reals.RIneq]
r1:258 [binder, in Coq.Reals.RIneq]
r1:26 [binder, in Coq.Reals.R_Ifp]
r1:260 [binder, in Coq.Reals.RIneq]
r1:262 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:262 [binder, in Coq.Reals.RIneq]
r1:265 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:266 [binder, in Coq.Reals.RIneq]
r1:269 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:269 [binder, in Coq.Reals.RIneq]
r1:27 [binder, in Coq.Reals.RIneq]
r1:272 [binder, in Coq.Reals.RIneq]
r1:273 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:275 [binder, in Coq.Reals.RIneq]
r1:278 [binder, in Coq.Reals.RIneq]
r1:28 [binder, in Coq.Reals.R_Ifp]
R1:28 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:280 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:281 [binder, in Coq.Reals.RIneq]
r1:284 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:284 [binder, in Coq.Reals.RIneq]
r1:286 [binder, in Coq.Reals.RIneq]
r1:288 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:29 [binder, in Coq.Reals.RIneq]
R1:29 [binder, in Coq.Relations.Relation_Definitions]
r1:290 [binder, in Coq.Reals.RIneq]
r1:292 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:294 [binder, in Coq.Reals.RIneq]
r1:296 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:298 [binder, in Coq.Reals.RIneq]
r1:3 [binder, in Coq.Reals.Rbasic_fun]
r1:3 [binder, in Coq.Reals.ROrderedType]
r1:30 [binder, in Coq.Reals.Raxioms]
r1:302 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:302 [binder, in Coq.Reals.RIneq]
r1:305 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:306 [binder, in Coq.Reals.RIneq]
r1:31 [binder, in Coq.Reals.RIneq]
R1:31 [binder, in Coq.Relations.Relation_Definitions]
r1:310 [binder, in Coq.Reals.RIneq]
r1:314 [binder, in Coq.Reals.RIneq]
r1:318 [binder, in Coq.Reals.RIneq]
r1:32 [binder, in Coq.Reals.PartSum]
r1:320 [binder, in Coq.Reals.RIneq]
r1:322 [binder, in Coq.Reals.RIneq]
r1:323 [binder, in Coq.ssr.ssrbool]
r1:324 [binder, in Coq.Reals.RIneq]
r1:328 [binder, in Coq.MSets.MSetGenTree]
r1:33 [binder, in Coq.Reals.Raxioms]
r1:33 [binder, in Coq.Reals.RIneq]
r1:331 [binder, in Coq.ssr.ssrbool]
r1:333 [binder, in Coq.Reals.RIneq]
r1:336 [binder, in Coq.Reals.RIneq]
r1:338 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:339 [binder, in Coq.Reals.RIneq]
r1:342 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:342 [binder, in Coq.Reals.RIneq]
r1:343 [binder, in Coq.ssr.ssrbool]
r1:345 [binder, in Coq.Reals.RIneq]
r1:348 [binder, in Coq.Reals.RIneq]
r1:35 [binder, in Coq.Reals.Raxioms]
r1:35 [binder, in Coq.Reals.RIneq]
R1:35 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:350 [binder, in Coq.Reals.RIneq]
r1:353 [binder, in Coq.Reals.RIneq]
r1:354 [binder, in Coq.ssr.ssrbool]
r1:356 [binder, in Coq.Reals.RIneq]
r1:357 [binder, in Coq.ssr.ssrbool]
r1:359 [binder, in Coq.Reals.RIneq]
r1:362 [binder, in Coq.Reals.RIneq]
r1:364 [binder, in Coq.Reals.RIneq]
r1:366 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:366 [binder, in Coq.Reals.RIneq]
r1:368 [binder, in Coq.Reals.RIneq]
r1:37 [binder, in Coq.Reals.RIneq]
r1:370 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:370 [binder, in Coq.Reals.RIneq]
r1:372 [binder, in Coq.Reals.RIneq]
r1:374 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:374 [binder, in Coq.Reals.RIneq]
r1:376 [binder, in Coq.Reals.RIneq]
r1:378 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:384 [binder, in Coq.Reals.RIneq]
r1:386 [binder, in Coq.Reals.RIneq]
r1:388 [binder, in Coq.Reals.RIneq]
r1:39 [binder, in Coq.Reals.Raxioms]
r1:39 [binder, in Coq.Reals.RIneq]
r1:390 [binder, in Coq.Reals.RIneq]
r1:393 [binder, in Coq.Reals.RIneq]
r1:396 [binder, in Coq.Reals.RIneq]
r1:399 [binder, in Coq.Reals.RIneq]
r1:4 [binder, in Coq.QArith.Qreduction]
R1:40 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:402 [binder, in Coq.Reals.RIneq]
r1:405 [binder, in Coq.Reals.RIneq]
r1:408 [binder, in Coq.Reals.RIneq]
r1:41 [binder, in Coq.Reals.RIneq]
r1:411 [binder, in Coq.Reals.RIneq]
r1:413 [binder, in Coq.Reals.RIneq]
r1:42 [binder, in Coq.Reals.Rdefinitions]
r1:42 [binder, in Coq.Reals.Raxioms]
r1:423 [binder, in Coq.Reals.RIneq]
r1:427 [binder, in Coq.Reals.RIneq]
r1:43 [binder, in Coq.ZArith.Zdiv]
r1:43 [binder, in Coq.Reals.RIneq]
r1:431 [binder, in Coq.Reals.RIneq]
r1:435 [binder, in Coq.Reals.RIneq]
r1:437 [binder, in Coq.Reals.RIneq]
r1:44 [binder, in Coq.Reals.Rdefinitions]
r1:440 [binder, in Coq.Reals.RIneq]
r1:443 [binder, in Coq.Reals.RIneq]
r1:446 [binder, in Coq.Reals.RIneq]
r1:449 [binder, in Coq.Reals.RIneq]
r1:45 [binder, in Coq.Reals.RIneq]
R1:45 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:452 [binder, in Coq.Reals.RIneq]
r1:455 [binder, in Coq.Reals.RIneq]
r1:458 [binder, in Coq.Reals.RIneq]
r1:46 [binder, in Coq.Reals.Rdefinitions]
r1:46 [binder, in Coq.Reals.Rbasic_fun]
r1:461 [binder, in Coq.Reals.RIneq]
r1:463 [binder, in Coq.Reals.RIneq]
r1:465 [binder, in Coq.Reals.RIneq]
r1:469 [binder, in Coq.Reals.RIneq]
r1:47 [binder, in Coq.Reals.RIneq]
r1:471 [binder, in Coq.Reals.RIneq]
r1:473 [binder, in Coq.Reals.RIneq]
r1:475 [binder, in Coq.Reals.RIneq]
r1:479 [binder, in Coq.Reals.RIneq]
r1:48 [binder, in Coq.Reals.Rdefinitions]
r1:48 [binder, in Coq.ZArith.Zdiv]
R1:48 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:481 [binder, in Coq.Reals.RIneq]
r1:487 [binder, in Coq.Reals.RIneq]
r1:489 [binder, in Coq.Reals.RIneq]
r1:49 [binder, in Coq.Reals.Rbasic_fun]
r1:49 [binder, in Coq.Reals.RIneq]
r1:493 [binder, in Coq.Reals.RIneq]
r1:495 [binder, in Coq.Reals.RIneq]
r1:499 [binder, in Coq.Reals.RIneq]
r1:5 [binder, in Coq.Reals.RIneq]
r1:5 [binder, in Coq.Reals.ROrderedType]
r1:51 [binder, in Coq.Reals.RIneq]
R1:51 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:52 [binder, in Coq.Reals.Rbasic_fun]
r1:53 [binder, in Coq.Reals.RIneq]
r1:55 [binder, in Coq.setoid_ring.Field_theory]
r1:55 [binder, in Coq.Reals.RIneq]
r1:55 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:57 [binder, in Coq.Reals.Rdefinitions]
r1:57 [binder, in Coq.Reals.RIneq]
r1:574 [binder, in Coq.micromega.Tauto]
r1:577 [binder, in Coq.micromega.Tauto]
r1:58 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:582 [binder, in Coq.Reals.RIneq]
r1:59 [binder, in Coq.Reals.RIneq]
r1:594 [binder, in Coq.Reals.RIneq]
r1:595 [binder, in Coq.Reals.RIneq]
r1:598 [binder, in Coq.Reals.RIneq]
r1:6 [binder, in Coq.Reals.Rbasic_fun]
r1:602 [binder, in Coq.Reals.RIneq]
r1:61 [binder, in Coq.Reals.RIneq]
R1:61 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:616 [binder, in Coq.Reals.RIneq]
r1:62 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r1:63 [binder, in Coq.Reals.RIneq]
r1:65 [binder, in Coq.Reals.RIneq]
R1:66 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:67 [binder, in Coq.Reals.Rdefinitions]
r1:67 [binder, in Coq.Reals.RIneq]
r1:68 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:69 [binder, in Coq.Reals.RIneq]
r1:7 [binder, in Coq.Reals.RIneq]
r1:70 [binder, in Coq.FSets.FSetDecide]
r1:70 [binder, in Coq.MSets.MSetDecide]
r1:71 [binder, in Coq.Reals.RIneq]
r1:71 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:73 [binder, in Coq.Reals.RIneq]
r1:75 [binder, in Coq.Reals.RIneq]
R1:75 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:77 [binder, in Coq.Reals.RIneq]
r1:77 [binder, in Coq.micromega.RMicromega]
r1:79 [binder, in Coq.Reals.RIneq]
r1:8 [binder, in Coq.Numbers.Natural.Abstract.NDiv]
r1:8 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
R1:82 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:83 [binder, in Coq.Reals.RIneq]
r1:87 [binder, in Coq.Reals.RIneq]
R1:87 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:88 [binder, in Coq.Reals.RiemannInt_SF]
r1:9 [binder, in Coq.Numbers.Integer.Abstract.ZDivEucl]
r1:9 [binder, in Coq.Reals.Rbasic_fun]
r1:9 [binder, in Coq.Reals.RIneq]
r1:90 [binder, in Coq.Reals.RIneq]
R1:92 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:93 [binder, in Coq.Reals.RIneq]
r1:94 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r1:96 [binder, in Coq.Reals.RIneq]
R1:97 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r1:99 [binder, in Coq.MSets.MSetAVL]
r1:99 [binder, in Coq.Reals.RIneq]
R2 [definition, in Coq.nsatz.NsatzTactic]
r2nz:156 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2nz:308 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2':145 [binder, in Coq.FSets.FMapAVL]
r2':71 [binder, in Coq.MSets.MSetAVL]
r2':79 [binder, in Coq.MSets.MSetAVL]
r2':86 [binder, in Coq.MSets.MSetAVL]
r2:10 [binder, in Coq.Numbers.Integer.Abstract.ZDivEucl]
r2:10 [binder, in Coq.Reals.Rbasic_fun]
r2:10 [binder, in Coq.Reals.RIneq]
r2:100 [binder, in Coq.MSets.MSetAVL]
r2:100 [binder, in Coq.Reals.RIneq]
r2:103 [binder, in Coq.Reals.RIneq]
R2:103 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:104 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:106 [binder, in Coq.Reals.RIneq]
R2:108 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:109 [binder, in Coq.Reals.RIneq]
R2:11 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:111 [binder, in Coq.Reals.RIneq]
r2:113 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:113 [binder, in Coq.Reals.RIneq]
R2:113 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R2:113 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:115 [binder, in Coq.Reals.RIneq]
r2:117 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:117 [binder, in Coq.Reals.RIneq]
r2:119 [binder, in Coq.Reals.RIneq]
r2:119 [binder, in Coq.Reals.RiemannInt_SF]
R2:119 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:12 [binder, in Coq.Reals.RIneq]
r2:121 [binder, in Coq.Reals.RIneq]
r2:123 [binder, in Coq.Reals.RIneq]
R2:124 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:125 [binder, in Coq.Reals.RIneq]
r2:1257 [binder, in Coq.FSets.FMapAVL]
r2:127 [binder, in Coq.Reals.RIneq]
r2:129 [binder, in Coq.Reals.RIneq]
r2:13 [binder, in Coq.Reals.Rbasic_fun]
r2:13 [binder, in Coq.Numbers.NatInt.NZDiv]
R2:130 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:131 [binder, in Coq.Reals.RIneq]
r2:133 [binder, in Coq.Reals.RIneq]
r2:135 [binder, in Coq.Reals.RIneq]
R2:137 [binder, in Coq.setoid_ring.Ring_polynom]
r2:137 [binder, in Coq.Reals.RiemannInt_SF]
r2:14 [binder, in Coq.Reals.RIneq]
r2:14 [binder, in Coq.micromega.RMicromega]
r2:142 [binder, in Coq.Reals.RIneq]
R2:143 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:145 [binder, in Coq.Reals.RIneq]
R2:147 [binder, in Coq.micromega.EnvRing]
R2:147 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:148 [binder, in Coq.Reals.RIneq]
r2:15 [binder, in Coq.Reals.R_Ifp]
r2:15 [binder, in Coq.Numbers.Integer.Abstract.ZDivTrunc]
R2:152 [binder, in Coq.setoid_ring.Ring_polynom]
r2:152 [binder, in Coq.Reals.SeqProp]
r2:153 [binder, in Coq.Reals.RIneq]
r2:154 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R2:154 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:1540 [binder, in Coq.FSets.FMapAVL]
r2:156 [binder, in Coq.Reals.RIneq]
r2:16 [binder, in Coq.Reals.Rbasic_fun]
r2:16 [binder, in Coq.Reals.RIneq]
r2:16 [binder, in Coq.micromega.RMicromega]
R2:16 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:160 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:160 [binder, in Coq.Reals.RIneq]
r2:162 [binder, in Coq.Reals.RIneq]
r2:162 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r2:164 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:164 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r2:164 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R2:166 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:167 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:168 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:168 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r2:17 [binder, in Coq.Reals.R_Ifp]
r2:17 [binder, in Coq.Reals.Raxioms]
r2:17 [binder, in Coq.Numbers.NatInt.NZDiv]
r2:170 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:172 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:172 [binder, in Coq.Reals.RIneq]
r2:173 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:175 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:175 [binder, in Coq.Reals.RIneq]
r2:176 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:178 [binder, in Coq.Reals.RIneq]
r2:18 [binder, in Coq.Reals.RIneq]
r2:18 [binder, in Coq.micromega.RMicromega]
r2:181 [binder, in Coq.Reals.RIneq]
r2:181 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r2:183 [binder, in Coq.Reals.RIneq]
r2:183 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r2:184 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R2:184 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:185 [binder, in Coq.Reals.RIneq]
r2:186 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r2:187 [binder, in Coq.Reals.RIneq]
r2:188 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R2:188 [binder, in Coq.Classes.Morphisms]
r2:188 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
R2:188 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:189 [binder, in Coq.Reals.RIneq]
r2:189 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:19 [binder, in Coq.Reals.R_Ifp]
r2:19 [binder, in Coq.Reals.Raxioms]
r2:19 [binder, in Coq.Reals.ClassicalConstructiveReals]
R2:190 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:191 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:191 [binder, in Coq.Reals.RIneq]
r2:193 [binder, in Coq.Reals.RIneq]
R2:194 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R2:195 [binder, in Coq.Classes.Morphisms]
r2:195 [binder, in Coq.Reals.RIneq]
r2:196 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:197 [binder, in Coq.Reals.RIneq]
R2:198 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:2 [binder, in Coq.Reals.ROrderedType]
R2:2 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:20 [binder, in Coq.Reals.RIneq]
R2:201 [binder, in Coq.Classes.CMorphisms]
r2:202 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:202 [binder, in Coq.Reals.RIneq]
R2:202 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:203 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:206 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:206 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:207 [binder, in Coq.Reals.RIneq]
R2:208 [binder, in Coq.Classes.CMorphisms]
R2:208 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:209 [binder, in Coq.Reals.RIneq]
r2:21 [binder, in Coq.Reals.R_Ifp]
r2:21 [binder, in Coq.Numbers.NatInt.NZDiv]
r2:210 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:211 [binder, in Coq.Reals.RIneq]
r2:213 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:213 [binder, in Coq.Reals.RIneq]
r2:215 [binder, in Coq.Reals.RIneq]
r2:217 [binder, in Coq.Reals.RIneq]
r2:22 [binder, in Coq.Reals.RIneq]
r2:221 [binder, in Coq.Reals.RIneq]
r2:223 [binder, in Coq.Reals.RIneq]
r2:225 [binder, in Coq.Reals.RIneq]
r2:226 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:228 [binder, in Coq.Reals.RIneq]
r2:229 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:23 [binder, in Coq.Reals.R_Ifp]
r2:23 [binder, in Coq.Reals.PSeries_reg]
r2:230 [binder, in Coq.Reals.RIneq]
r2:232 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:232 [binder, in Coq.Reals.RIneq]
r2:234 [binder, in Coq.Reals.RIneq]
r2:235 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:236 [binder, in Coq.Reals.RIneq]
r2:238 [binder, in Coq.Reals.RIneq]
r2:24 [binder, in Coq.Reals.Raxioms]
r2:24 [binder, in Coq.Reals.RIneq]
R2:24 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:240 [binder, in Coq.Reals.RIneq]
R2:240 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r2:243 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:243 [binder, in Coq.Reals.RIneq]
r2:246 [binder, in Coq.setoid_ring.Field_theory]
R2:246 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r2:249 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:249 [binder, in Coq.Reals.RIneq]
r2:25 [binder, in Coq.Reals.R_Ifp]
R2:250 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r2:251 [binder, in Coq.Reals.RIneq]
r2:253 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:257 [binder, in Coq.Reals.RIneq]
r2:259 [binder, in Coq.Reals.RIneq]
r2:26 [binder, in Coq.Reals.Raxioms]
r2:26 [binder, in Coq.Reals.RIneq]
R2:26 [binder, in Coq.Relations.Relation_Definitions]
r2:261 [binder, in Coq.Reals.RIneq]
r2:263 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:263 [binder, in Coq.Reals.RIneq]
r2:266 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:267 [binder, in Coq.Reals.RIneq]
r2:27 [binder, in Coq.Reals.R_Ifp]
r2:270 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:270 [binder, in Coq.Reals.RIneq]
r2:273 [binder, in Coq.Reals.RIneq]
r2:274 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:276 [binder, in Coq.Reals.RIneq]
r2:279 [binder, in Coq.Reals.RIneq]
r2:28 [binder, in Coq.Reals.RIneq]
r2:281 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:282 [binder, in Coq.Reals.RIneq]
r2:285 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:285 [binder, in Coq.Reals.RIneq]
r2:287 [binder, in Coq.Reals.RIneq]
r2:289 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:29 [binder, in Coq.Reals.R_Ifp]
R2:29 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:291 [binder, in Coq.Reals.RIneq]
r2:293 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:295 [binder, in Coq.Reals.RIneq]
r2:297 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:299 [binder, in Coq.Reals.RIneq]
r2:30 [binder, in Coq.Reals.RIneq]
R2:30 [binder, in Coq.Relations.Relation_Definitions]
r2:303 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:303 [binder, in Coq.Reals.RIneq]
r2:306 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:307 [binder, in Coq.Reals.RIneq]
r2:31 [binder, in Coq.Reals.Raxioms]
r2:311 [binder, in Coq.Reals.RIneq]
r2:315 [binder, in Coq.Reals.RIneq]
r2:319 [binder, in Coq.Reals.RIneq]
r2:32 [binder, in Coq.Reals.RIneq]
R2:32 [binder, in Coq.Relations.Relation_Definitions]
r2:321 [binder, in Coq.Reals.RIneq]
r2:323 [binder, in Coq.Reals.RIneq]
r2:324 [binder, in Coq.ssr.ssrbool]
r2:325 [binder, in Coq.Reals.RIneq]
r2:33 [binder, in Coq.Reals.PartSum]
r2:332 [binder, in Coq.ssr.ssrbool]
r2:334 [binder, in Coq.Reals.RIneq]
r2:337 [binder, in Coq.Reals.RIneq]
r2:339 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:34 [binder, in Coq.Reals.Raxioms]
r2:34 [binder, in Coq.Reals.RIneq]
r2:340 [binder, in Coq.Reals.RIneq]
r2:343 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:343 [binder, in Coq.Reals.RIneq]
r2:344 [binder, in Coq.ssr.ssrbool]
r2:346 [binder, in Coq.Reals.RIneq]
r2:349 [binder, in Coq.Reals.RIneq]
r2:351 [binder, in Coq.Reals.RIneq]
r2:354 [binder, in Coq.Reals.RIneq]
r2:355 [binder, in Coq.ssr.ssrbool]
r2:357 [binder, in Coq.Reals.RIneq]
r2:358 [binder, in Coq.ssr.ssrbool]
r2:36 [binder, in Coq.Reals.Raxioms]
r2:36 [binder, in Coq.Reals.RIneq]
R2:36 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:360 [binder, in Coq.MSets.MSetGenTree]
r2:360 [binder, in Coq.Reals.RIneq]
r2:363 [binder, in Coq.Reals.RIneq]
r2:365 [binder, in Coq.Reals.RIneq]
r2:367 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:367 [binder, in Coq.Reals.RIneq]
r2:369 [binder, in Coq.Reals.RIneq]
r2:371 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:371 [binder, in Coq.Reals.RIneq]
r2:373 [binder, in Coq.Reals.RIneq]
r2:375 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:375 [binder, in Coq.Reals.RIneq]
r2:377 [binder, in Coq.Reals.RIneq]
r2:379 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:38 [binder, in Coq.Reals.RIneq]
r2:385 [binder, in Coq.Reals.RIneq]
r2:387 [binder, in Coq.Reals.RIneq]
r2:389 [binder, in Coq.Reals.RIneq]
r2:391 [binder, in Coq.Reals.RIneq]
r2:394 [binder, in Coq.Reals.RIneq]
r2:397 [binder, in Coq.Reals.RIneq]
r2:4 [binder, in Coq.Reals.Rbasic_fun]
r2:4 [binder, in Coq.Reals.ROrderedType]
r2:40 [binder, in Coq.Reals.Raxioms]
r2:40 [binder, in Coq.Reals.RIneq]
r2:400 [binder, in Coq.Reals.RIneq]
r2:403 [binder, in Coq.Reals.RIneq]
r2:406 [binder, in Coq.Reals.RIneq]
r2:409 [binder, in Coq.Reals.RIneq]
R2:41 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:412 [binder, in Coq.Reals.RIneq]
r2:414 [binder, in Coq.Reals.RIneq]
r2:42 [binder, in Coq.Reals.RIneq]
r2:424 [binder, in Coq.Reals.RIneq]
r2:428 [binder, in Coq.Reals.RIneq]
r2:43 [binder, in Coq.Reals.Rdefinitions]
r2:43 [binder, in Coq.Reals.Raxioms]
r2:432 [binder, in Coq.Reals.RIneq]
r2:436 [binder, in Coq.Reals.RIneq]
r2:438 [binder, in Coq.Reals.RIneq]
r2:44 [binder, in Coq.ZArith.Zdiv]
r2:44 [binder, in Coq.Reals.RIneq]
r2:441 [binder, in Coq.Reals.RIneq]
r2:444 [binder, in Coq.Reals.RIneq]
r2:447 [binder, in Coq.Reals.RIneq]
r2:45 [binder, in Coq.Reals.Rdefinitions]
r2:450 [binder, in Coq.Reals.RIneq]
r2:453 [binder, in Coq.Reals.RIneq]
r2:456 [binder, in Coq.Reals.RIneq]
r2:459 [binder, in Coq.Reals.RIneq]
r2:46 [binder, in Coq.Reals.RIneq]
R2:46 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:462 [binder, in Coq.Reals.RIneq]
r2:464 [binder, in Coq.Reals.RIneq]
r2:466 [binder, in Coq.Reals.RIneq]
r2:47 [binder, in Coq.Reals.Rdefinitions]
r2:47 [binder, in Coq.Reals.Rbasic_fun]
r2:470 [binder, in Coq.Reals.RIneq]
r2:472 [binder, in Coq.Reals.RIneq]
r2:474 [binder, in Coq.Reals.RIneq]
r2:476 [binder, in Coq.Reals.RIneq]
r2:48 [binder, in Coq.Reals.RIneq]
r2:480 [binder, in Coq.Reals.RIneq]
r2:482 [binder, in Coq.Reals.RIneq]
r2:488 [binder, in Coq.Reals.RIneq]
r2:49 [binder, in Coq.Reals.Rdefinitions]
r2:49 [binder, in Coq.ZArith.Zdiv]
R2:49 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:490 [binder, in Coq.Reals.RIneq]
r2:494 [binder, in Coq.Reals.RIneq]
r2:496 [binder, in Coq.Reals.RIneq]
r2:5 [binder, in Coq.QArith.Qreduction]
r2:50 [binder, in Coq.Reals.Rbasic_fun]
r2:50 [binder, in Coq.Reals.RIneq]
r2:500 [binder, in Coq.Reals.RIneq]
r2:52 [binder, in Coq.Reals.RIneq]
R2:52 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:53 [binder, in Coq.Reals.Rbasic_fun]
r2:54 [binder, in Coq.Reals.RIneq]
r2:56 [binder, in Coq.setoid_ring.Field_theory]
r2:56 [binder, in Coq.Reals.RIneq]
r2:56 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:575 [binder, in Coq.micromega.Tauto]
r2:578 [binder, in Coq.micromega.Tauto]
r2:58 [binder, in Coq.Reals.Rdefinitions]
r2:58 [binder, in Coq.Reals.RIneq]
r2:583 [binder, in Coq.Reals.RIneq]
r2:59 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:599 [binder, in Coq.Reals.RIneq]
r2:6 [binder, in Coq.Reals.RIneq]
r2:6 [binder, in Coq.Reals.ROrderedType]
r2:60 [binder, in Coq.Reals.RIneq]
r2:603 [binder, in Coq.Reals.RIneq]
r2:617 [binder, in Coq.Reals.RIneq]
r2:62 [binder, in Coq.Reals.RIneq]
R2:62 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:63 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r2:64 [binder, in Coq.Reals.RIneq]
r2:66 [binder, in Coq.Reals.RIneq]
R2:67 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:68 [binder, in Coq.Reals.Rdefinitions]
r2:68 [binder, in Coq.Reals.RIneq]
r2:69 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:7 [binder, in Coq.Reals.Rbasic_fun]
r2:70 [binder, in Coq.Reals.RIneq]
r2:71 [binder, in Coq.FSets.FSetDecide]
r2:71 [binder, in Coq.MSets.MSetDecide]
r2:72 [binder, in Coq.Reals.RIneq]
r2:72 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:74 [binder, in Coq.Reals.RIneq]
r2:76 [binder, in Coq.Reals.RIneq]
R2:76 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:78 [binder, in Coq.Reals.RIneq]
r2:78 [binder, in Coq.micromega.RMicromega]
r2:8 [binder, in Coq.Reals.RIneq]
r2:80 [binder, in Coq.Reals.RIneq]
R2:83 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:84 [binder, in Coq.Reals.RIneq]
r2:88 [binder, in Coq.Reals.RIneq]
R2:88 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:89 [binder, in Coq.Reals.RiemannInt_SF]
r2:9 [binder, in Coq.Numbers.Natural.Abstract.NDiv]
r2:9 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
r2:91 [binder, in Coq.Reals.RIneq]
R2:93 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r2:94 [binder, in Coq.Reals.RIneq]
r2:95 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r2:97 [binder, in Coq.Reals.RIneq]
R2:98 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r3:101 [binder, in Coq.Reals.RIneq]
r3:104 [binder, in Coq.Reals.RIneq]
r3:107 [binder, in Coq.Reals.RIneq]
r3:114 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r3:115 [binder, in Coq.Reals.RiemannInt_SF]
r3:118 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r3:133 [binder, in Coq.Reals.RiemannInt_SF]
r3:136 [binder, in Coq.Reals.RIneq]
r3:165 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r3:169 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r3:176 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r3:192 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r3:197 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R3:198 [binder, in Coq.Classes.Morphisms]
r3:198 [binder, in Coq.Reals.RIneq]
r3:20 [binder, in Coq.Reals.Raxioms]
R3:211 [binder, in Coq.Classes.CMorphisms]
r3:241 [binder, in Coq.Reals.RIneq]
r3:244 [binder, in Coq.Reals.RIneq]
r3:25 [binder, in Coq.Reals.PSeries_reg]
r3:250 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r3:254 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r3:264 [binder, in Coq.Reals.RIneq]
r3:27 [binder, in Coq.Reals.Raxioms]
r3:288 [binder, in Coq.Reals.RIneq]
r3:292 [binder, in Coq.Reals.RIneq]
r3:296 [binder, in Coq.Reals.RIneq]
R3:30 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r3:300 [binder, in Coq.Reals.RIneq]
r3:304 [binder, in Coq.Reals.RIneq]
r3:308 [binder, in Coq.Reals.RIneq]
r3:312 [binder, in Coq.Reals.RIneq]
r3:316 [binder, in Coq.Reals.RIneq]
r3:32 [binder, in Coq.Reals.Raxioms]
r3:352 [binder, in Coq.Reals.RIneq]
r3:355 [binder, in Coq.Reals.RIneq]
r3:358 [binder, in Coq.Reals.RIneq]
r3:361 [binder, in Coq.Reals.RIneq]
r3:37 [binder, in Coq.Reals.Raxioms]
r3:415 [binder, in Coq.Reals.RIneq]
r3:425 [binder, in Coq.Reals.RIneq]
r3:429 [binder, in Coq.Reals.RIneq]
r3:433 [binder, in Coq.Reals.RIneq]
r3:57 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r3:600 [binder, in Coq.Reals.RIneq]
r3:70 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r3:81 [binder, in Coq.Reals.RIneq]
r3:85 [binder, in Coq.Reals.RIneq]
r3:89 [binder, in Coq.Reals.RIneq]
r3:90 [binder, in Coq.Reals.RiemannInt_SF]
r3:92 [binder, in Coq.Reals.RIneq]
r3:95 [binder, in Coq.Reals.RIneq]
r3:98 [binder, in Coq.Reals.RIneq]
r4:118 [binder, in Coq.Reals.RiemannInt_SF]
r4:136 [binder, in Coq.Reals.RiemannInt_SF]
r4:137 [binder, in Coq.Reals.RIneq]
r4:166 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r4:170 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r4:177 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r4:193 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r4:198 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r4:289 [binder, in Coq.Reals.RIneq]
r4:293 [binder, in Coq.Reals.RIneq]
r4:297 [binder, in Coq.Reals.RIneq]
r4:301 [binder, in Coq.Reals.RIneq]
r4:305 [binder, in Coq.Reals.RIneq]
r4:309 [binder, in Coq.Reals.RIneq]
r4:313 [binder, in Coq.Reals.RIneq]
r4:317 [binder, in Coq.Reals.RIneq]
r4:416 [binder, in Coq.Reals.RIneq]
r4:426 [binder, in Coq.Reals.RIneq]
r4:430 [binder, in Coq.Reals.RIneq]
r4:434 [binder, in Coq.Reals.RIneq]
r4:601 [binder, in Coq.Reals.RIneq]
r4:82 [binder, in Coq.Reals.RIneq]
r4:86 [binder, in Coq.Reals.RIneq]
R:1 [binder, in Coq.setoid_ring.Ncring_initial]
r:1 [binder, in Coq.Reals.R_Ifp]
R:1 [binder, in Coq.nsatz.NsatzTactic]
R:1 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:1 [binder, in Coq.setoid_ring.Ncring_tac]
R:1 [binder, in Coq.setoid_ring.Integral_domain]
R:1 [binder, in Coq.setoid_ring.Cring]
R:1 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:1 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:1 [binder, in Coq.ZArith.ZArith_dec]
r:1 [binder, in Coq.Reals.Rpow_def]
r:1 [binder, in Coq.Reals.RIneq]
R:1 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:1 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:10 [binder, in Coq.Program.Wf]
R:10 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:10 [binder, in Coq.Classes.RelationClasses]
R:10 [binder, in Coq.Logic.ChoiceFacts]
r:10 [binder, in Coq.Numbers.NatInt.NZLog]
R:10 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:10 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:10 [binder, in Coq.Sets.Relations_2_facts]
R:10 [binder, in Coq.Sets.Relations_3_facts]
r:100 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:100 [binder, in Coq.Classes.CRelationClasses]
r:100 [binder, in Coq.micromega.ZifyInst]
R:100 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:1007 [binder, in Coq.Init.Specif]
r:101 [binder, in Coq.FSets.FSetDecide]
R:101 [binder, in Coq.Classes.RelationClasses]
R:101 [binder, in Coq.Logic.ChoiceFacts]
r:101 [binder, in Coq.MSets.MSetDecide]
R:101 [binder, in Coq.Classes.CMorphisms]
R:101 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:1015 [binder, in Coq.Init.Specif]
r:102 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:102 [binder, in Coq.Classes.Morphisms]
R:102 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:102 [binder, in Coq.Classes.CRelationClasses]
r:102 [binder, in Coq.micromega.ZifyInst]
r:102 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:1023 [binder, in Coq.Init.Specif]
R:103 [binder, in Coq.Classes.RelationClasses]
R:1031 [binder, in Coq.Init.Specif]
r:1031 [binder, in Coq.FSets.FMapAVL]
r:1035 [binder, in Coq.FSets.FMapAVL]
r:104 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:104 [binder, in Coq.Classes.CRelationClasses]
r:104 [binder, in Coq.Reals.Rbasic_fun]
R:104 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:104 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:1040 [binder, in Coq.FSets.FMapAVL]
r:1044 [binder, in Coq.FSets.FMapAVL]
r:1049 [binder, in Coq.FSets.FMapAVL]
R:105 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:105 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:105 [binder, in Coq.Classes.CMorphisms]
r:105 [binder, in Coq.Reals.Rbasic_fun]
r:105 [binder, in Coq.micromega.ZifyInst]
r:1052 [binder, in Coq.Init.Specif]
r:1055 [binder, in Coq.FSets.FMapAVL]
R:1058 [binder, in Coq.Init.Specif]
r:106 [binder, in Coq.ZArith.BinIntDef]
R:106 [binder, in Coq.Classes.CRelationClasses]
R:107 [binder, in Coq.setoid_ring.Ncring_tac]
r:107 [binder, in Coq.Numbers.Integer.Abstract.ZDivTrunc]
r:107 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:108 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:108 [binder, in Coq.Logic.ChoiceFacts]
R:108 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:108 [binder, in Coq.Classes.CRelationClasses]
R:108 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:108 [binder, in Coq.micromega.ZifyInst]
R:108 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:1085 [binder, in Coq.FSets.FMapAVL]
R:109 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:109 [binder, in Coq.ZArith.BinIntDef]
R:109 [binder, in Coq.Classes.Morphisms]
R:109 [binder, in Coq.Classes.CMorphisms]
r:1091 [binder, in Coq.FSets.FMapAVL]
r:1098 [binder, in Coq.FSets.FMapAVL]
r:11 [binder, in Coq.Reals.R_Ifp]
R:11 [binder, in Coq.Classes.Morphisms]
r:11 [binder, in Coq.NArith.BinNat]
r:11 [binder, in Coq.ZArith.Zdiv]
R:11 [binder, in Coq.Classes.CMorphisms]
r:11 [binder, in Coq.Reals.Rbasic_fun]
r:11 [binder, in Coq.micromega.ZifyComparison]
r:11 [binder, in Coq.Numbers.NatInt.NZSqrt]
r:11 [binder, in Coq.micromega.RMicromega]
R:11 [binder, in Coq.Logic.Diaconescu]
R:11 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:11 [binder, in Coq.Sets.Relations_1]
r:110 [binder, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
R:110 [binder, in Coq.Classes.CRelationClasses]
r:1103 [binder, in Coq.FSets.FMapAVL]
r:1108 [binder, in Coq.FSets.FMapAVL]
R:111 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:111 [binder, in Coq.ZArith.BinIntDef]
R:111 [binder, in Coq.Classes.Morphisms]
r:111 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:111 [binder, in Coq.Lists.SetoidList]
R:112 [binder, in Coq.Classes.CRelationClasses]
R:112 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:113 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:113 [binder, in Coq.Classes.RelationClasses]
R:113 [binder, in Coq.Classes.CMorphisms]
r:113 [binder, in Coq.Reals.RList]
r:113 [binder, in Coq.Reals.RiemannInt_SF]
r:114 [binder, in Coq.FSets.FSetDecide]
R:114 [binder, in Coq.Classes.Morphisms]
R:114 [binder, in Coq.Logic.ChoiceFacts]
r:114 [binder, in Coq.MSets.MSetDecide]
r:114 [binder, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
r:114 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:1141 [binder, in Coq.FSets.FMapAVL]
r:1146 [binder, in Coq.FSets.FMapAVL]
R:115 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:115 [binder, in Coq.Init.Nat]
r:115 [binder, in Coq.Init.Datatypes]
r:1150 [binder, in Coq.FSets.FMapAVL]
R:116 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:116 [binder, in Coq.Reals.RList]
R:117 [binder, in Coq.Classes.Morphisms]
R:117 [binder, in Coq.Classes.CMorphisms]
r:117 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
r:118 [binder, in Coq.ZArith.BinIntDef]
R:118 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:118 [binder, in Coq.setoid_ring.Ncring]
R:119 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:119 [binder, in Coq.Logic.ChoiceFacts]
R:119 [binder, in Coq.Classes.CRelationClasses]
r:119 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
r:119 [binder, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
R:12 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:12 [binder, in Coq.Logic.ClassicalChoice]
R:12 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:12 [binder, in Coq.Logic.IndefiniteDescription]
r:12 [binder, in Coq.micromega.QMicromega]
R:12 [binder, in Coq.Sets.Relations_1_facts]
R:12 [binder, in Coq.Sets.Relations_2_facts]
r:12 [binder, in Coq.micromega.RMicromega]
r:12 [binder, in Coq.Arith.Euclid]
R:12 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:120 [binder, in Coq.ZArith.BinInt]
R:120 [binder, in Coq.Classes.Morphisms]
R:120 [binder, in Coq.Classes.CMorphisms]
R:120 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:120 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:121 [binder, in Coq.ZArith.Zdiv]
R:122 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:122 [binder, in Coq.setoid_ring.Ncring_tac]
r:122 [binder, in Coq.Reals.PSeries_reg]
R:123 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:123 [binder, in Coq.Classes.Morphisms]
r:123 [binder, in Coq.Init.Nat]
R:123 [binder, in Coq.Classes.CMorphisms]
R:123 [binder, in Coq.Classes.CRelationClasses]
r:123 [binder, in Coq.MSets.MSetGenTree]
r:123 [binder, in Coq.Reals.Rbasic_fun]
r:1233 [binder, in Coq.FSets.FMapAVL]
R:124 [binder, in Coq.Program.Wf]
r:124 [binder, in Coq.ZArith.BinIntDef]
R:124 [binder, in Coq.Logic.ChoiceFacts]
r:124 [binder, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
R:125 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:125 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:126 [binder, in Coq.ZArith.BinIntDef]
R:126 [binder, in Coq.Classes.Morphisms]
R:127 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:127 [binder, in Coq.Classes.CRelationClasses]
r:128 [binder, in Coq.ZArith.BinIntDef]
R:128 [binder, in Coq.Classes.Morphisms]
r:13 [binder, in Coq.Reals.R_Ifp]
r:13 [binder, in Coq.Numbers.Natural.Abstract.NDiv]
R:13 [binder, in Coq.Classes.RelationClasses]
r:13 [binder, in Coq.FSets.FMapFullAVL]
r:13 [binder, in Coq.ZArith.Zdiv]
R:13 [binder, in Coq.Logic.ClassicalUniqueChoice]
R:13 [binder, in Coq.Classes.CRelationClasses]
r:13 [binder, in Coq.Reals.PSeries_reg]
r:13 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
r:13 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:13 [binder, in Coq.Reals.ClassicalDedekindReals]
r:13 [binder, in Coq.Reals.ClassicalConstructiveReals]
r:130 [binder, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
r:130 [binder, in Coq.ZArith.BinIntDef]
r:130 [binder, in Coq.Floats.SpecFloat]
R:130 [binder, in Coq.Classes.Morphisms]
R:130 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:131 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:131 [binder, in Coq.Reals.RiemannInt_SF]
R:131 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:132 [binder, in Coq.setoid_ring.Ring_polynom]
R:133 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:133 [binder, in Coq.setoid_ring.Ring_polynom]
R:133 [binder, in Coq.Classes.CRelationClasses]
r:134 [binder, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
r:134 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:134 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
R:135 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:135 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:136 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:137 [binder, in Coq.Classes.Morphisms]
r:137 [binder, in Coq.ZArith.Znumtheory]
R:138 [binder, in Coq.Classes.RelationClasses]
r:138 [binder, in Coq.Reals.RIneq]
R:138 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r:139 [binder, in Coq.ZArith.BinInt]
R:139 [binder, in Coq.Classes.CMorphisms]
R:139 [binder, in Coq.Classes.CRelationClasses]
r:139 [binder, in Coq.Reals.RIneq]
R:139 [binder, in Coq.setoid_ring.Ncring]
r:14 [binder, in Coq.Arith.Compare]
R:14 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:14 [binder, in Coq.Numbers.Integer.Abstract.ZDivEucl]
r:14 [binder, in Coq.Reals.ArithProp]
R:14 [binder, in Coq.Logic.SetoidChoice]
r:14 [binder, in Coq.Reals.Rbasic_fun]
r:14 [binder, in Coq.Logic.HLevels]
R:14 [binder, in Coq.Sets.Relations_3_facts]
r:14 [binder, in Coq.Reals.ClassicalConstructiveReals]
R:140 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:140 [binder, in Coq.Classes.RelationClasses]
R:140 [binder, in Coq.micromega.EnvRing]
r:140 [binder, in Coq.Reals.RIneq]
r:140 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
R:141 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:141 [binder, in Coq.micromega.ZifyClasses]
r:141 [binder, in Coq.PArith.BinPos]
r:141 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
R:141 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:142 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:142 [binder, in Coq.micromega.EnvRing]
r:142 [binder, in Coq.setoid_ring.Ncring_polynom]
R:143 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:143 [binder, in Coq.ZArith.BinInt]
R:143 [binder, in Coq.Classes.Morphisms]
r:143 [binder, in Coq.Reals.RIneq]
R:144 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:144 [binder, in Coq.PArith.BinPos]
r:144 [binder, in Coq.Reals.Rfunctions]
r:144 [binder, in Coq.MSets.MSetPositive]
R:144 [binder, in Coq.Classes.CRelationClasses]
r:144 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:145 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:145 [binder, in Coq.setoid_ring.Ring_polynom]
R:145 [binder, in Coq.Arith.Wf_nat]
R:145 [binder, in Coq.setoid_ring.Ncring_tac]
R:146 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:146 [binder, in Coq.Classes.Morphisms]
r:146 [binder, in Coq.Reals.RIneq]
R:146 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:146 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:147 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:147 [binder, in Coq.PArith.BinPos]
R:147 [binder, in Coq.Classes.RelationClasses]
R:147 [binder, in Coq.setoid_ring.Ring_polynom]
R:148 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:148 [binder, in Coq.Classes.Morphisms]
r:148 [binder, in Coq.FSets.FMapPositive]
r:148 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:149 [binder, in Coq.Classes.RelationClasses]
R:15 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:15 [binder, in Coq.Logic.ChoiceFacts]
R:15 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:15 [binder, in Coq.Classes.CMorphisms]
R:15 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:15 [binder, in Coq.Arith.Euclid]
r:15 [binder, in Coq.micromega.Refl]
R:15 [binder, in Coq.Sets.Relations_1]
R:15 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:150 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:150 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:151 [binder, in Coq.Classes.Morphisms]
R:151 [binder, in Coq.Classes.CMorphisms]
r:151 [binder, in Coq.Reals.RIneq]
r:151 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
R:152 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:152 [binder, in Coq.MSets.MSetGenTree]
R:152 [binder, in Coq.setoid_ring.Ncring]
R:153 [binder, in Coq.Classes.Morphisms]
R:153 [binder, in Coq.Lists.SetoidList]
R:154 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:154 [binder, in Coq.PArith.BinPos]
r:154 [binder, in Coq.Reals.RIneq]
R:154 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:155 [binder, in Coq.Classes.CMorphisms]
R:156 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:157 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:157 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
r:157 [binder, in Coq.Reals.RIneq]
r:158 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:158 [binder, in Coq.Classes.CMorphisms]
r:158 [binder, in Coq.FSets.FSetPositive]
r:159 [binder, in Coq.PArith.BinPos]
r:159 [binder, in Coq.NArith.BinNat]
r:159 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
r:159 [binder, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
r:16 [binder, in Coq.Logic.EqdepFacts]
r:16 [binder, in Coq.ZArith.Zpow_facts]
r:16 [binder, in Coq.Reals.Rseries]
R:16 [binder, in Coq.Classes.Morphisms]
R:16 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:160 [binder, in Coq.setoid_ring.Ncring_tac]
r:160 [binder, in Coq.FSets.FMapAVL]
r:160 [binder, in Coq.MSets.MSetGenTree]
r:160 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
R:161 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:161 [binder, in Coq.ZArith.BinInt]
R:161 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:162 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
r:162 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:162 [binder, in Coq.PArith.BinPos]
R:162 [binder, in Coq.Classes.CMorphisms]
r:162 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:163 [binder, in Coq.Classes.RelationClasses]
r:163 [binder, in Coq.NArith.BinNat]
r:163 [binder, in Coq.Reals.RIneq]
r:164 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
r:164 [binder, in Coq.FSets.FMapAVL]
r:164 [binder, in Coq.Reals.RIneq]
R:165 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:165 [binder, in Coq.PArith.BinPos]
R:165 [binder, in Coq.Classes.RelationClasses]
R:165 [binder, in Coq.Classes.CMorphisms]
r:165 [binder, in Coq.MSets.MSetGenTree]
R:165 [binder, in Coq.setoid_ring.Ncring_polynom]
r:165 [binder, in Coq.Reals.RIneq]
r:165 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:166 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:166 [binder, in Coq.Reals.RIneq]
r:167 [binder, in Coq.Reals.RIneq]
r:168 [binder, in Coq.PArith.BinPos]
r:168 [binder, in Coq.Reals.Rfunctions]
r:168 [binder, in Coq.Reals.RIneq]
r:168 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:169 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:169 [binder, in Coq.Classes.RelationClasses]
r:169 [binder, in Coq.FSets.FMapAVL]
R:169 [binder, in Coq.Classes.CMorphisms]
r:169 [binder, in Coq.Reals.RIneq]
R:169 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:17 [binder, in Coq.Numbers.Natural.Abstract.NDiv]
R:17 [binder, in Coq.setoid_ring.Integral_domain]
R:17 [binder, in Coq.setoid_ring.Cring]
R:17 [binder, in Coq.Classes.CEquivalence]
r:17 [binder, in Coq.MSets.MSetRBT]
R:17 [binder, in Coq.Classes.CRelationClasses]
R:17 [binder, in Coq.Sets.Relations_2_facts]
r:17 [binder, in Coq.Reals.Rbasic_fun]
r:17 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
R:17 [binder, in Coq.Sets.Relations_3_facts]
R:17 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:17 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:17 [binder, in Coq.Reals.ClassicalDedekindReals]
r:17 [binder, in Coq.Reals.ClassicalConstructiveReals]
R:17 [binder, in Coq.Classes.Equivalence]
r:170 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:170 [binder, in Coq.Reals.RIneq]
r:171 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:173 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:173 [binder, in Coq.setoid_ring.Ncring_tac]
r:173 [binder, in Coq.Reals.RIneq]
r:174 [binder, in Coq.ZArith.Znumtheory]
r:174 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:174 [binder, in Coq.Vectors.VectorDef]
R:175 [binder, in Coq.Classes.RelationClasses]
R:175 [binder, in Coq.Classes.Morphisms]
r:176 [binder, in Coq.Reals.RIneq]
r:177 [binder, in Coq.NArith.BinNat]
r:177 [binder, in Coq.FSets.FMapAVL]
R:177 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:178 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:178 [binder, in Coq.Classes.Morphisms]
R:178 [binder, in Coq.setoid_ring.Ncring_polynom]
r:179 [binder, in Coq.Reals.RIneq]
r:179 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
R:18 [binder, in Coq.Classes.RelationClasses]
r:18 [binder, in Coq.Numbers.Integer.Abstract.ZDivEucl]
r:18 [binder, in Coq.FSets.FMapFullAVL]
r:18 [binder, in Coq.ZArith.Zdiv]
R:18 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:18 [binder, in Coq.Sets.Relations_1_facts]
R:180 [binder, in Coq.Classes.RelationClasses]
R:181 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:181 [binder, in Coq.setoid_ring.Ring_theory]
R:181 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:182 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:182 [binder, in Coq.FSets.FMapAVL]
r:183 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:185 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:186 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:186 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:187 [binder, in Coq.Reals.Rpower]
r:187 [binder, in Coq.FSets.FMapAVL]
r:187 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:188 [binder, in Coq.Reals.Rpower]
R:188 [binder, in Coq.Classes.CMorphisms]
R:189 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:189 [binder, in Coq.setoid_ring.Ncring]
R:19 [binder, in Coq.Classes.Morphisms]
R:19 [binder, in Coq.Reals.Abstract.ConstructivePower]
r:19 [binder, in Coq.Numbers.Integer.Abstract.ZDivTrunc]
R:19 [binder, in Coq.Sets.Relations_2_facts]
r:19 [binder, in Coq.Reals.PSeries_reg]
r:19 [binder, in Coq.ZArith.Zcompare]
R:190 [binder, in Coq.Classes.CMorphisms]
r:190 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r:190 [binder, in Coq.micromega.ZMicromega]
r:192 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r:193 [binder, in Coq.Arith.PeanoNat]
r:193 [binder, in Coq.setoid_ring.Ring_theory]
R:194 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:194 [binder, in Coq.Reals.RiemannInt_SF]
r:195 [binder, in Coq.ZArith.BinInt]
r:195 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
R:196 [binder, in Coq.setoid_ring.Ncring_tac]
r:196 [binder, in Coq.Reals.RiemannInt_SF]
r:196 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:197 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r:198 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
r:198 [binder, in Coq.ZArith.BinInt]
R:198 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:199 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:199 [binder, in Coq.Reals.RIneq]
r:199 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r:2 [binder, in Coq.Reals.R_Ifp]
R:2 [binder, in Coq.Classes.RelationClasses]
r:2 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:2 [binder, in Coq.Classes.SetoidTactics]
R:2 [binder, in Coq.ssr.ssrclasses]
R:2 [binder, in Coq.Classes.CEquivalence]
R:2 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:2 [binder, in Coq.Classes.CMorphisms]
R:2 [binder, in Coq.Sets.Relations_1_facts]
R:2 [binder, in Coq.Sets.Relations_2_facts]
R:2 [binder, in Coq.ssr.ssrsetoid]
R:2 [binder, in Coq.setoid_ring.Ncring_polynom]
r:2 [binder, in Coq.Reals.PSeries_reg]
r:2 [binder, in Coq.Reals.RIneq]
R:2 [binder, in Coq.Sets.Relations_3_facts]
R:2 [binder, in Coq.Classes.Equivalence]
r:20 [binder, in Coq.FSets.FSetPositive]
r:20 [binder, in Coq.MSets.MSetPositive]
R:20 [binder, in Coq.Classes.CRelationClasses]
R:20 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:20 [binder, in Coq.Reals.Rlogic]
R:20 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:20 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
R:20 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r:200 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:200 [binder, in Coq.Reals.RIneq]
r:201 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
r:201 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyReals]
r:201 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:202 [binder, in Coq.Classes.Morphisms]
R:203 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:203 [binder, in Coq.Reals.RIneq]
r:204 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:204 [binder, in Coq.Reals.RIneq]
r:204 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:205 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
r:205 [binder, in Coq.FSets.FMapAVL]
r:205 [binder, in Coq.Reals.RIneq]
R:207 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:207 [binder, in Coq.Classes.Morphisms]
r:208 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:21 [binder, in Coq.Lists.List]
R:21 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:21 [binder, in Coq.Classes.RelationPairs]
R:21 [binder, in Coq.setoid_ring.Ncring_tac]
R:21 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:21 [binder, in Coq.funind.Recdef]
R:21 [binder, in Coq.Classes.CMorphisms]
r:21 [binder, in Coq.Reals.Raxioms]
r:21 [binder, in Coq.MSets.MSetRBT]
R:21 [binder, in Coq.Sets.Relations_1_facts]
R:21 [binder, in Coq.Classes.CRelationClasses]
R:21 [binder, in Coq.Sets.Relations_2_facts]
r:21 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
r:21 [binder, in Coq.micromega.RMicromega]
r:21 [binder, in Coq.Reals.ClassicalConstructiveReals]
R:210 [binder, in Coq.setoid_ring.Ncring_tac]
R:211 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:213 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:214 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:215 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:215 [binder, in Coq.Classes.CMorphisms]
R:216 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:216 [binder, in Coq.Reals.RiemannInt_SF]
R:217 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:217 [binder, in Coq.Classes.Morphisms]
R:218 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:218 [binder, in Coq.Reals.RIneq]
r:218 [binder, in Coq.Reals.RiemannInt_SF]
R:219 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:219 [binder, in Coq.Reals.RIneq]
r:22 [binder, in Coq.FSets.FMapFullAVL]
r:22 [binder, in Coq.Reals.Raxioms]
R:22 [binder, in Coq.Logic.ClassicalDescription]
r:22 [binder, in Coq.micromega.RMicromega]
r:22 [binder, in Coq.Reals.Rlogic]
R:220 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:220 [binder, in Coq.Classes.CMorphisms]
R:221 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:222 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:222 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:223 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:223 [binder, in Coq.Classes.Morphisms]
R:224 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:224 [binder, in Coq.setoid_ring.Ncring_tac]
r:225 [binder, in Coq.PArith.BinPos]
R:225 [binder, in Coq.Classes.CMorphisms]
r:226 [binder, in Coq.PArith.BinPos]
R:227 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:227 [binder, in Coq.Init.Specif]
R:229 [binder, in Coq.Classes.Morphisms]
R:23 [binder, in Coq.Classes.RelationClasses]
R:23 [binder, in Coq.Classes.Morphisms]
R:23 [binder, in Coq.Logic.ChoiceFacts]
r:23 [binder, in Coq.Numbers.Integer.Abstract.ZDivTrunc]
r:23 [binder, in Coq.FSets.FMapAVL]
r:23 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:23 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:23 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
r:23 [binder, in Coq.Reals.ClassicalConstructiveReals]
R:230 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:231 [binder, in Coq.MSets.MSetRBT]
R:231 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:233 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:233 [binder, in Coq.Classes.CMorphisms]
r:234 [binder, in Coq.PArith.BinPos]
R:235 [binder, in Coq.Classes.Morphisms]
R:235 [binder, in Coq.setoid_ring.Ncring_tac]
R:236 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:237 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:238 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:239 [binder, in Coq.PArith.BinPos]
r:24 [binder, in Coq.Program.Wf]
r:24 [binder, in Coq.MSets.MSetAVL]
R:24 [binder, in Coq.Classes.CEquivalence]
R:24 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:24 [binder, in Coq.Sets.Relations_1_facts]
R:24 [binder, in Coq.Classes.CRelationClasses]
R:24 [binder, in Coq.Sets.Relations_2_facts]
R:24 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:24 [binder, in Coq.Reals.Rlogic]
R:24 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:24 [binder, in Coq.Classes.Equivalence]
R:240 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:240 [binder, in Coq.ZArith.Zdiv]
r:240 [binder, in Coq.MSets.MSetRBT]
r:241 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:241 [binder, in Coq.MSets.MSetRBT]
r:242 [binder, in Coq.ZArith.Zdiv]
r:243 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
r:243 [binder, in Coq.FSets.FSetInterface]
R:243 [binder, in Coq.Classes.CMorphisms]
R:244 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:244 [binder, in Coq.PArith.BinPos]
r:245 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:245 [binder, in Coq.Reals.RIneq]
r:246 [binder, in Coq.Reals.RIneq]
r:247 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
R:247 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:247 [binder, in Coq.Reals.RIneq]
r:248 [binder, in Coq.ZArith.Zdiv]
r:249 [binder, in Coq.FSets.FSetInterface]
R:249 [binder, in Coq.Classes.CMorphisms]
r:249 [binder, in Coq.MSets.MSetRBT]
R:25 [binder, in Coq.Classes.Morphisms]
R:25 [binder, in Coq.Reals.Abstract.ConstructivePower]
r:25 [binder, in Coq.micromega.ZifyBool]
r:25 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:25 [binder, in Coq.MSets.MSetRBT]
r:25 [binder, in Coq.Numbers.NatInt.NZDiv]
r:25 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
r:25 [binder, in Coq.micromega.RMicromega]
r:250 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
R:250 [binder, in Coq.setoid_ring.Ncring_tac]
r:250 [binder, in Coq.MSets.MSetRBT]
R:251 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:251 [binder, in Coq.ZArith.Zdiv]
r:251 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
r:252 [binder, in Coq.Reals.RIneq]
R:253 [binder, in Coq.Logic.EqdepFacts]
r:253 [binder, in Coq.Reals.RIneq]
R:254 [binder, in Coq.Logic.ChoiceFacts]
R:255 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:255 [binder, in Coq.Classes.CMorphisms]
R:257 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:257 [binder, in Coq.Logic.ClassicalFacts]
r:258 [binder, in Coq.MSets.MSetRBT]
R:259 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:26 [binder, in Coq.FSets.FMapFullAVL]
R:26 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:26 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:26 [binder, in Coq.micromega.ZMicromega]
r:260 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:261 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:261 [binder, in Coq.ZArith.Zdiv]
R:261 [binder, in Coq.Classes.CMorphisms]
R:264 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:265 [binder, in Coq.Reals.RIneq]
r:266 [binder, in Coq.MSets.MSetRBT]
R:267 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:267 [binder, in Coq.MSets.MSetRBT]
r:268 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:268 [binder, in Coq.Logic.EqdepFacts]
R:268 [binder, in Coq.setoid_ring.Ncring_tac]
r:268 [binder, in Coq.Reals.RIneq]
r:27 [binder, in Coq.QArith.Qcabs]
r:27 [binder, in Coq.FSets.FMapAVL]
R:27 [binder, in Coq.Sets.Relations_1_facts]
R:27 [binder, in Coq.Sets.Relations_2_facts]
R:27 [binder, in Coq.Logic.Classical_Prop]
R:271 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:271 [binder, in Coq.Reals.RIneq]
r:272 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:274 [binder, in Coq.MSets.MSetRBT]
r:274 [binder, in Coq.Reals.RIneq]
R:275 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:276 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:277 [binder, in Coq.setoid_ring.Ring_polynom]
r:277 [binder, in Coq.Reals.RIneq]
R:278 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:278 [binder, in Coq.MSets.MSetRBT]
r:279 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:279 [binder, in Coq.Reals.Ratan]
r:28 [binder, in Coq.Program.Wf]
r:28 [binder, in Coq.QArith.Qabs]
R:28 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
r:28 [binder, in Coq.Reals.Raxioms]
r:28 [binder, in Coq.Logic.Berardi]
R:28 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:280 [binder, in Coq.Reals.RIneq]
R:282 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:282 [binder, in Coq.setoid_ring.Ring_theory]
r:283 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:283 [binder, in Coq.Reals.RIneq]
R:284 [binder, in Coq.setoid_ring.Ring_polynom]
r:285 [binder, in Coq.MSets.MSetRBT]
R:286 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:287 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:287 [binder, in Coq.setoid_ring.Ring_theory]
r:289 [binder, in Coq.MSets.MSetRBT]
R:29 [binder, in Coq.Classes.RelationClasses]
R:29 [binder, in Coq.Reals.Abstract.ConstructivePower]
r:29 [binder, in Coq.setoid_ring.Integral_domain]
r:29 [binder, in Coq.MSets.MSetAVL]
r:29 [binder, in Coq.Reals.Raxioms]
r:29 [binder, in Coq.MSets.MSetRBT]
R:29 [binder, in Coq.Classes.CRelationClasses]
r:29 [binder, in Coq.Numbers.Cyclic.Int63.Cyclic63]
r:29 [binder, in Coq.Numbers.NatInt.NZDiv]
r:29 [binder, in Coq.Arith.Between]
r:29 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
r:29 [binder, in Coq.Reals.ClassicalDedekindReals]
r:29 [binder, in Coq.Reals.ClassicalConstructiveReals]
R:290 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:290 [binder, in Coq.PArith.BinPos]
r:290 [binder, in Coq.MSets.MSetGenTree]
r:291 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:293 [binder, in Coq.PArith.BinPos]
R:294 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:295 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:296 [binder, in Coq.MSets.MSetRBT]
r:296 [binder, in Coq.MSets.MSetGenTree]
R:298 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:299 [binder, in Coq.Reals.Ratan]
r:3 [binder, in Coq.Reals.R_Ifp]
R:3 [binder, in Coq.FSets.FSetDecide]
R:3 [binder, in Coq.Logic.SetoidChoice]
R:3 [binder, in Coq.Classes.Morphisms]
R:3 [binder, in Coq.Classes.RelationPairs]
R:3 [binder, in Coq.MSets.MSetDecide]
R:3 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
r:3 [binder, in Coq.micromega.ZifyNat]
R:3 [binder, in Coq.Logic.RelationalChoice]
r:3 [binder, in Coq.Reals.Ratan]
r:3 [binder, in Coq.Reals.RIneq]
r:3 [binder, in Coq.micromega.ZifyN]
r:30 [binder, in Coq.FSets.FMapFullAVL]
R:30 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
r:30 [binder, in Coq.micromega.ZifySint63]
R:300 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:300 [binder, in Coq.micromega.EnvRing]
r:300 [binder, in Coq.MSets.MSetRBT]
r:301 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:301 [binder, in Coq.micromega.RingMicromega]
r:301 [binder, in Coq.Reals.Ratan]
R:304 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:31 [binder, in Coq.Classes.Morphisms]
r:31 [binder, in Coq.QArith.Qabs]
R:31 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:31 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:31 [binder, in Coq.Reals.ClassicalConstructiveReals]
R:310 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:315 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:318 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:319 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:32 [binder, in Coq.Logic.ConstructiveEpsilon]
r:32 [binder, in Coq.Numbers.DecimalFacts]
r:32 [binder, in Coq.QArith.Qabs]
R:32 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:32 [binder, in Coq.Classes.CMorphisms]
r:32 [binder, in Coq.Numbers.HexadecimalFacts]
r:32 [binder, in Coq.Arith.Between]
r:32 [binder, in Coq.micromega.RMicromega]
r:32 [binder, in Coq.Reals.ClassicalDedekindReals]
R:321 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:322 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:323 [binder, in Coq.MSets.MSetRBT]
r:324 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:325 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:326 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:327 [binder, in Coq.MSets.MSetRBT]
R:328 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:33 [binder, in Coq.Reals.Rtrigo1]
R:33 [binder, in Coq.Classes.RelationClasses]
R:33 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:33 [binder, in Coq.Logic.ChoiceFacts]
R:33 [binder, in Coq.Sets.Relations_2_facts]
r:33 [binder, in Coq.Numbers.Integer.Abstract.ZDivFloor]
R:330 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:332 [binder, in Coq.Reals.RIneq]
R:333 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:334 [binder, in Coq.MSets.MSetRBT]
r:335 [binder, in Coq.Reals.RIneq]
R:336 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:336 [binder, in Coq.ssr.ssrbool]
r:337 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:338 [binder, in Coq.MSets.MSetRBT]
r:338 [binder, in Coq.Reals.RIneq]
r:34 [binder, in Coq.Reals.Rtrigo1]
r:34 [binder, in Coq.FSets.FMapFullAVL]
r:34 [binder, in Coq.QArith.Qabs]
r:34 [binder, in Coq.MSets.MSetRBT]
R:34 [binder, in Coq.Classes.CRelationClasses]
r:34 [binder, in Coq.micromega.RMicromega]
R:34 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:340 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:340 [binder, in Coq.ssr.ssrbool]
r:341 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:341 [binder, in Coq.Reals.RIneq]
R:344 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:344 [binder, in Coq.FSets.FMapFacts]
r:344 [binder, in Coq.Reals.RIneq]
r:345 [binder, in Coq.Numbers.Cyclic.Int31.Cyclic31]
R:347 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:347 [binder, in Coq.Reals.RIneq]
r:348 [binder, in Coq.ssr.ssrbool]
r:348 [binder, in Coq.MSets.MSetGenTree]
r:35 [binder, in Coq.Numbers.DecimalFacts]
R:35 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:35 [binder, in Coq.setoid_ring.Ncring_tac]
r:35 [binder, in Coq.setoid_ring.Integral_domain]
R:35 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:35 [binder, in Coq.Numbers.HexadecimalFacts]
r:35 [binder, in Coq.Arith.Between]
r:35 [binder, in Coq.micromega.RMicromega]
R:350 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:354 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:354 [binder, in Coq.micromega.Tauto]
R:358 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:36 [binder, in Coq.Logic.ClassicalDescription]
R:361 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:364 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:364 [binder, in Coq.MSets.MSetRBT]
r:365 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:368 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:368 [binder, in Coq.PArith.BinPos]
r:368 [binder, in Coq.MSets.MSetRBT]
r:369 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:37 [binder, in Coq.Logic.ConstructiveEpsilon]
R:37 [binder, in Coq.Classes.RelationClasses]
r:37 [binder, in Coq.Init.Wf]
R:37 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:371 [binder, in Coq.PArith.BinPos]
R:372 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:373 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:376 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:376 [binder, in Coq.PArith.BinPos]
r:377 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:378 [binder, in Coq.Reals.RIneq]
r:379 [binder, in Coq.PArith.BinPos]
r:379 [binder, in Coq.Reals.RIneq]
r:38 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:38 [binder, in Coq.Numbers.DecimalFacts]
r:38 [binder, in Coq.Reals.Raxioms]
r:38 [binder, in Coq.Numbers.HexadecimalFacts]
r:38 [binder, in Coq.ZArith.Zquot]
r:38 [binder, in Coq.Arith.Between]
R:38 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:380 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:380 [binder, in Coq.Reals.RIneq]
r:381 [binder, in Coq.Reals.RIneq]
r:382 [binder, in Coq.PArith.BinPos]
r:382 [binder, in Coq.Reals.RIneq]
r:383 [binder, in Coq.FSets.FMapWeakList]
r:383 [binder, in Coq.Reals.RIneq]
r:385 [binder, in Coq.FSets.FMapWeakList]
r:386 [binder, in Coq.PArith.BinPos]
r:387 [binder, in Coq.MSets.MSetRBT]
r:389 [binder, in Coq.PArith.BinPos]
R:389 [binder, in Coq.Init.Logic]
R:39 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:39 [binder, in Coq.PArith.BinPos]
R:39 [binder, in Coq.Classes.RelationClasses]
R:39 [binder, in Coq.Logic.ClassicalEpsilon]
R:39 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:39 [binder, in Coq.Logic.ChoiceFacts]
r:39 [binder, in Coq.ZArith.Zdiv]
R:39 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:39 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:392 [binder, in Coq.PArith.BinPos]
r:392 [binder, in Coq.Reals.RIneq]
r:395 [binder, in Coq.Reals.RIneq]
r:396 [binder, in Coq.PArith.BinPos]
r:398 [binder, in Coq.setoid_ring.Ring_polynom]
r:398 [binder, in Coq.Reals.RIneq]
r:399 [binder, in Coq.PArith.BinPos]
R:4 [binder, in Coq.Logic.ChoiceFacts]
r:4 [binder, in Coq.Relations.Relations]
r:4 [binder, in Coq.ZArith.Zdiv]
R:4 [binder, in Coq.Logic.ClassicalUniqueChoice]
R:4 [binder, in Coq.Numbers.NatInt.NZDomain]
R:4 [binder, in Coq.Sets.Relations_2_facts]
R:4 [binder, in Coq.Numbers.Cyclic.Int63.Ring63]
r:4 [binder, in Coq.Reals.RIneq]
R:4 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:4 [binder, in Coq.Numbers.Cyclic.Int31.Ring31]
R:40 [binder, in Coq.Init.Peano]
r:40 [binder, in Coq.ZArith.BinInt]
R:40 [binder, in Coq.Classes.CRelationClasses]
r:401 [binder, in Coq.Reals.RIneq]
r:402 [binder, in Coq.PArith.BinPos]
r:404 [binder, in Coq.Reals.RIneq]
r:405 [binder, in Coq.PArith.BinPos]
r:407 [binder, in Coq.Reals.RIneq]
r:407 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
r:408 [binder, in Coq.PArith.BinPos]
r:41 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:41 [binder, in Coq.Init.Decimal]
R:41 [binder, in Coq.Classes.Morphisms]
R:41 [binder, in Coq.Reals.Abstract.ConstructivePower]
r:41 [binder, in Coq.Init.Hexadecimal]
R:41 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:41 [binder, in Coq.Reals.Raxioms]
r:41 [binder, in Coq.ZArith.Zquot]
r:41 [binder, in Coq.Arith.Between]
r:41 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
r:410 [binder, in Coq.Reals.RIneq]
r:412 [binder, in Coq.PArith.BinPos]
r:413 [binder, in Coq.setoid_ring.Ring_polynom]
r:415 [binder, in Coq.PArith.BinPos]
r:418 [binder, in Coq.PArith.BinPos]
r:42 [binder, in Coq.FSets.FSetBridge]
R:42 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
r:42 [binder, in Coq.FSets.FMapAVL]
r:42 [binder, in Coq.Reals.PSeries_reg]
R:42 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:42 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:42 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:425 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
R:43 [binder, in Coq.micromega.ZifyClasses]
r:43 [binder, in Coq.PArith.BinPos]
R:43 [binder, in Coq.Classes.RelationClasses]
R:43 [binder, in Coq.Reals.Abstract.ConstructivePower]
r:432 [binder, in Coq.PArith.BinPos]
r:435 [binder, in Coq.PArith.BinPos]
r:439 [binder, in Coq.setoid_ring.Ring_polynom]
r:439 [binder, in Coq.Reals.RIneq]
r:44 [binder, in Coq.Init.Decimal]
R:44 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:44 [binder, in Coq.Logic.ChoiceFacts]
r:44 [binder, in Coq.FSets.FMapFullAVL]
r:44 [binder, in Coq.Init.Hexadecimal]
R:44 [binder, in Coq.Classes.CRelationClasses]
r:44 [binder, in Coq.ZArith.Zquot]
r:44 [binder, in Coq.Arith.Between]
r:44 [binder, in Coq.micromega.RMicromega]
R:440 [binder, in Coq.setoid_ring.Field_theory]
r:442 [binder, in Coq.PArith.BinPos]
r:442 [binder, in Coq.setoid_ring.Ring_polynom]
r:442 [binder, in Coq.Reals.RIneq]
r:445 [binder, in Coq.PArith.BinPos]
r:445 [binder, in Coq.setoid_ring.Ring_polynom]
r:445 [binder, in Coq.Reals.RIneq]
r:447 [binder, in Coq.Reals.Ranalysis5]
r:448 [binder, in Coq.PArith.BinPos]
r:448 [binder, in Coq.Reals.RIneq]
r:45 [binder, in Coq.Logic.ConstructiveEpsilon]
r:45 [binder, in Coq.Numbers.DecimalFacts]
R:45 [binder, in Coq.Classes.Morphisms]
R:45 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:45 [binder, in Coq.Classes.CMorphisms]
r:45 [binder, in Coq.Numbers.HexadecimalFacts]
r:450 [binder, in Coq.setoid_ring.Ring_polynom]
r:451 [binder, in Coq.PArith.BinPos]
r:451 [binder, in Coq.Reals.RIneq]
r:454 [binder, in Coq.PArith.BinPos]
r:454 [binder, in Coq.Reals.RIneq]
r:457 [binder, in Coq.PArith.BinPos]
r:457 [binder, in Coq.Reals.RIneq]
r:46 [binder, in Coq.PArith.BinPos]
R:46 [binder, in Coq.setoid_ring.Ncring_tac]
r:46 [binder, in Coq.Reals.PSeries_reg]
R:46 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:460 [binder, in Coq.Reals.RIneq]
r:462 [binder, in Coq.PArith.BinPos]
r:465 [binder, in Coq.PArith.BinPos]
r:465 [binder, in Coq.setoid_ring.Ring_polynom]
r:468 [binder, in Coq.PArith.BinPos]
r:47 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:47 [binder, in Coq.setoid_ring.Ncring_initial]
r:47 [binder, in Coq.FSets.FSetBridge]
R:47 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:47 [binder, in Coq.Arith.Between]
r:48 [binder, in Coq.Init.Decimal]
R:48 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:48 [binder, in Coq.Classes.RelationClasses]
r:48 [binder, in Coq.setoid_ring.Field_theory]
r:48 [binder, in Coq.Init.Hexadecimal]
r:48 [binder, in Coq.MSets.MSetRBT]
R:48 [binder, in Coq.Classes.CRelationClasses]
r:48 [binder, in Coq.ZArith.Zquot]
r:48 [binder, in Coq.Logic.HLevels]
r:483 [binder, in Coq.Reals.RIneq]
r:485 [binder, in Coq.Reals.RIneq]
r:486 [binder, in Coq.Reals.RIneq]
r:49 [binder, in Coq.PArith.BinPos]
r:49 [binder, in Coq.Init.Wf]
r:49 [binder, in Coq.setoid_ring.Field_theory]
r:49 [binder, in Coq.FSets.FMapFullAVL]
r:49 [binder, in Coq.MSets.MSetRBT]
r:491 [binder, in Coq.Reals.RIneq]
r:492 [binder, in Coq.Reals.RIneq]
r:494 [binder, in Coq.setoid_ring.Ring_polynom]
r:497 [binder, in Coq.MSets.MSetAVL]
r:497 [binder, in Coq.Reals.RIneq]
r:498 [binder, in Coq.setoid_ring.Ring_polynom]
r:498 [binder, in Coq.Reals.RIneq]
r:5 [binder, in Coq.Reals.R_Ifp]
r:5 [binder, in Coq.Reals.Rseries]
R:5 [binder, in Coq.Classes.SetoidTactics]
R:5 [binder, in Coq.Classes.CEquivalence]
R:5 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:5 [binder, in Coq.Classes.Equivalence]
r:50 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:50 [binder, in Coq.Logic.ConstructiveEpsilon]
r:50 [binder, in Coq.Init.Decimal]
r:50 [binder, in Coq.Numbers.DecimalFacts]
R:50 [binder, in Coq.Classes.RelationClasses]
r:50 [binder, in Coq.Init.Hexadecimal]
R:50 [binder, in Coq.ssr.ssreflect]
R:50 [binder, in Coq.Classes.CMorphisms]
r:50 [binder, in Coq.Numbers.HexadecimalFacts]
R:50 [binder, in Coq.Classes.CRelationClasses]
r:50 [binder, in Coq.Arith.Between]
R:50 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:501 [binder, in Coq.MSets.MSetAVL]
r:508 [binder, in Coq.MSets.MSetAVL]
r:509 [binder, in Coq.setoid_ring.Ring_polynom]
R:51 [binder, in Coq.Classes.Morphisms]
r:51 [binder, in Coq.ssr.ssreflect]
r:51 [binder, in Coq.Reals.Raxioms]
r:512 [binder, in Coq.MSets.MSetAVL]
r:52 [binder, in Coq.PArith.BinPos]
R:52 [binder, in Coq.Logic.ChoiceFacts]
r:52 [binder, in Coq.ZArith.Zquot]
r:52 [binder, in Coq.Reals.PSeries_reg]
R:52 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:521 [binder, in Coq.setoid_ring.Ring_polynom]
r:529 [binder, in Coq.MSets.MSetAVL]
r:53 [binder, in Coq.ZArith.Zdiv]
R:53 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:53 [binder, in Coq.Logic.HLevels]
r:53 [binder, in Coq.Reals.Ratan]
r:533 [binder, in Coq.MSets.MSetAVL]
R:54 [binder, in Coq.Classes.RelationClasses]
r:54 [binder, in Coq.Reals.Cauchy.ConstructiveRcomplete]
R:54 [binder, in Coq.Classes.CRelationClasses]
r:54 [binder, in Coq.Reals.Rbasic_fun]
R:54 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:54 [binder, in Coq.Numbers.Cyclic.Int63.Uint63]
r:540 [binder, in Coq.MSets.MSetAVL]
r:545 [binder, in Coq.MSets.MSetAVL]
r:55 [binder, in Coq.Numbers.DecimalFacts]
r:55 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:55 [binder, in Coq.PArith.BinPos]
R:55 [binder, in Coq.Classes.Morphisms]
r:55 [binder, in Coq.Numbers.HexadecimalFacts]
r:55 [binder, in Coq.Logic.HLevels]
R:55 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r:550 [binder, in Coq.MSets.MSetAVL]
r:551 [binder, in Coq.PArith.BinPos]
r:56 [binder, in Coq.Init.Nat]
r:56 [binder, in Coq.ZArith.Zquot]
R:56 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:561 [binder, in Coq.ssr.ssrbool]
r:566 [binder, in Coq.PArith.BinPos]
r:569 [binder, in Coq.PArith.BinPos]
r:57 [binder, in Coq.Reals.Abstract.ConstructiveReals]
R:57 [binder, in Coq.setoid_ring.Ncring_tac]
r:57 [binder, in Coq.setoid_ring.Field_theory]
r:57 [binder, in Coq.ZArith.Zdiv]
r:57 [binder, in Coq.Arith.Between]
R:57 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:573 [binder, in Coq.Reals.RIneq]
r:574 [binder, in Coq.PArith.BinPos]
r:576 [binder, in Coq.Reals.RIneq]
r:577 [binder, in Coq.PArith.BinPos]
r:579 [binder, in Coq.Reals.RIneq]
r:58 [binder, in Coq.PArith.BinPos]
R:58 [binder, in Coq.Logic.ChoiceFacts]
r:58 [binder, in Coq.setoid_ring.Field_theory]
R:58 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:58 [binder, in Coq.Reals.Abstract.ConstructiveRealsMorphisms]
r:583 [binder, in Coq.MSets.MSetRBT]
r:587 [binder, in Coq.MSets.MSetRBT]
r:59 [binder, in Coq.FSets.FSetDecide]
R:59 [binder, in Coq.Classes.RelationClasses]
r:59 [binder, in Coq.MSets.MSetDecide]
r:59 [binder, in Coq.setoid_ring.Field_theory]
R:59 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:59 [binder, in Coq.Classes.CRelationClasses]
R:59 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:593 [binder, in Coq.MSets.MSetRBT]
R:6 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:6 [binder, in Coq.FSets.FSetDecide]
R:6 [binder, in Coq.Classes.RelationClasses]
R:6 [binder, in Coq.Reals.Abstract.ConstructivePower]
R:6 [binder, in Coq.setoid_ring.Ncring_tac]
R:6 [binder, in Coq.MSets.MSetDecide]
r:6 [binder, in Coq.MSets.MSetAVL]
R:6 [binder, in Coq.Classes.CMorphisms]
R:6 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:6 [binder, in Coq.micromega.ZifyNat]
R:6 [binder, in Coq.Sets.Relations_1_facts]
R:6 [binder, in Coq.Sets.Relations_2_facts]
r:6 [binder, in Coq.Reals.Rlimit]
R:6 [binder, in Coq.Sets.Relations_3_facts]
R:6 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:6 [binder, in Coq.NArith.Ndiv_def]
r:6 [binder, in Coq.Arith.Euclid]
r:6 [binder, in Coq.micromega.ZifyN]
r:60 [binder, in Coq.Numbers.DecimalFacts]
r:60 [binder, in Coq.FSets.FMapAVL]
r:60 [binder, in Coq.Numbers.HexadecimalFacts]
r:60 [binder, in Coq.Reals.PSeries_reg]
r:61 [binder, in Coq.Program.Wf]
r:61 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:61 [binder, in Coq.PArith.BinPos]
r:61 [binder, in Coq.ZArith.Zdiv]
R:61 [binder, in Coq.Classes.CMorphisms]
R:61 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:61 [binder, in Coq.Numbers.Natural.Abstract.NGcd]
r:611 [binder, in Coq.Init.Specif]
r:62 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:62 [binder, in Coq.Numbers.Natural.Abstract.NDefOps]
R:62 [binder, in Coq.Logic.ChoiceFacts]
r:62 [binder, in Coq.FSets.FMapFullAVL]
r:62 [binder, in Coq.NArith.BinNatDef]
r:621 [binder, in Coq.PArith.BinPos]
r:621 [binder, in Coq.Init.Specif]
r:623 [binder, in Coq.MSets.MSetRBT]
r:627 [binder, in Coq.MSets.MSetRBT]
R:63 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:63 [binder, in Coq.Classes.CRelationClasses]
R:63 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:631 [binder, in Coq.MSets.MSetRBT]
r:633 [binder, in Coq.Init.Specif]
r:635 [binder, in Coq.MSets.MSetRBT]
r:639 [binder, in Coq.MSets.MSetRBT]
r:643 [binder, in Coq.MSets.MSetRBT]
r:645 [binder, in Coq.Init.Specif]
r:647 [binder, in Coq.MSets.MSetRBT]
R:65 [binder, in Coq.Classes.RelationClasses]
r:65 [binder, in Coq.ZArith.Zdiv]
R:65 [binder, in Coq.Classes.CMorphisms]
r:65 [binder, in Coq.NArith.BinNatDef]
R:65 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:66 [binder, in Coq.FSets.FMapFullAVL]
R:66 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:667 [binder, in Coq.MSets.MSetRBT]
R:67 [binder, in Coq.Classes.RelationClasses]
r:67 [binder, in Coq.PArith.BinPosDef]
R:675 [binder, in Coq.Init.Specif]
r:678 [binder, in Coq.Init.Specif]
R:68 [binder, in Coq.Classes.Morphisms]
R:68 [binder, in Coq.setoid_ring.Ncring_tac]
r:68 [binder, in Coq.ssr.ssrfun]
R:68 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:68 [binder, in Coq.MSets.MSetRBT]
R:68 [binder, in Coq.Classes.CRelationClasses]
R:688 [binder, in Coq.Init.Specif]
r:69 [binder, in Coq.Numbers.Natural.Abstract.NDiv]
R:69 [binder, in Coq.Classes.RelationClasses]
R:69 [binder, in Coq.Classes.CMorphisms]
R:69 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:696 [binder, in Coq.Init.Specif]
r:7 [binder, in Coq.Reals.R_Ifp]
R:7 [binder, in Coq.Classes.Morphisms]
r:7 [binder, in Coq.FSets.FMapFullAVL]
R:7 [binder, in Coq.Reals.Abstract.ConstructiveAbs]
R:7 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:70 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:70 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:70 [binder, in Coq.Reals.Abstract.ConstructiveSum]
R:704 [binder, in Coq.Init.Specif]
r:707 [binder, in Coq.Init.Specif]
R:71 [binder, in Coq.Classes.RelationClasses]
R:71 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:71 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:717 [binder, in Coq.Init.Specif]
R:72 [binder, in Coq.Logic.ChoiceFacts]
r:720 [binder, in Coq.Init.Specif]
r:728 [binder, in Coq.Init.Logic]
r:73 [binder, in Coq.Reals.Abstract.ConstructiveReals]
r:73 [binder, in Coq.Reals.Rbasic_fun]
r:73 [binder, in Coq.Reals.PSeries_reg]
R:732 [binder, in Coq.Init.Specif]
r:735 [binder, in Coq.Init.Specif]
R:739 [binder, in Coq.ssr.ssrbool]
R:74 [binder, in Coq.Classes.CMorphisms]
R:74 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:74 [binder, in Coq.Classes.CRelationClasses]
R:74 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:740 [binder, in Coq.Init.Logic]
R:745 [binder, in Coq.Init.Specif]
r:75 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
R:75 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:752 [binder, in Coq.Init.Logic]
r:753 [binder, in Coq.Init.Specif]
R:76 [binder, in Coq.Classes.RelationClasses]
R:76 [binder, in Coq.Classes.CRelationClasses]
R:761 [binder, in Coq.Init.Specif]
r:764 [binder, in Coq.Init.Logic]
R:769 [binder, in Coq.Init.Specif]
R:77 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:77 [binder, in Coq.Logic.Hurkens]
r:77 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
r:77 [binder, in Coq.ZArith.Znumtheory]
R:78 [binder, in Coq.Classes.Morphisms]
r:78 [binder, in Coq.ssr.ssrfun]
r:78 [binder, in Coq.ZArith.Zpower]
R:78 [binder, in Coq.Classes.CRelationClasses]
R:78 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:79 [binder, in Coq.btauto.Algebra]
R:79 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
R:79 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:792 [binder, in Coq.Init.Specif]
R:798 [binder, in Coq.Init.Specif]
r:8 [binder, in Coq.Reals.R_Ifp]
R:8 [binder, in Coq.Classes.SetoidTactics]
r:8 [binder, in Coq.ZArith.Zdiv]
R:8 [binder, in Coq.Sets.Relations_1_facts]
R:8 [binder, in Coq.Sets.Relations_2_facts]
R:8 [binder, in Coq.Sets.Relations_3_facts]
R:8 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:8 [binder, in Coq.Classes.Morphisms_Relations]
r:80 [binder, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
r:80 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:80 [binder, in Coq.Numbers.Integer.Abstract.ZGcd]
r:80 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyAbs]
R:80 [binder, in Coq.setoid_ring.Ncring_tac]
R:80 [binder, in Coq.Classes.CMorphisms]
R:80 [binder, in Coq.Classes.CRelationClasses]
R:81 [binder, in Coq.MSets.MSetProperties]
r:81 [binder, in Coq.Numbers.Cyclic.Int31.Int31]
R:81 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:81 [binder, in Coq.FSets.FSetProperties]
R:82 [binder, in Coq.Classes.RelationClasses]
R:82 [binder, in Coq.Classes.Morphisms]
r:82 [binder, in Coq.Logic.Hurkens]
r:83 [binder, in Coq.Numbers.NatInt.NZDiv]
R:836 [binder, in Coq.Init.Logic]
r:839 [binder, in Coq.Init.Logic]
r:84 [binder, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
R:84 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:84 [binder, in Coq.ZArith.Zpower]
R:84 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:84 [binder, in Coq.Reals.ClassicalDedekindReals]
r:85 [binder, in Coq.Reals.Rfunctions]
R:85 [binder, in Coq.Classes.Morphisms]
R:85 [binder, in Coq.Classes.CRelationClasses]
R:850 [binder, in Coq.Init.Logic]
R:858 [binder, in Coq.Init.Logic]
R:86 [binder, in Coq.Logic.ChoiceFacts]
r:86 [binder, in Coq.Reals.ClassicalDedekindReals]
R:866 [binder, in Coq.Init.Logic]
r:869 [binder, in Coq.Init.Logic]
R:87 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:87 [binder, in Coq.Reals.Rbasic_fun]
R:87 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:873 [binder, in Coq.Init.Specif]
R:879 [binder, in Coq.Init.Logic]
r:88 [binder, in Coq.MSets.MSetGenTree]
r:88 [binder, in Coq.Reals.Rbasic_fun]
R:88 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:882 [binder, in Coq.Init.Logic]
r:883 [binder, in Coq.Init.Specif]
R:89 [binder, in Coq.Classes.Morphisms]
r:89 [binder, in Coq.Reals.Rbasic_fun]
R:894 [binder, in Coq.Init.Logic]
r:895 [binder, in Coq.Init.Specif]
r:897 [binder, in Coq.Init.Logic]
r:9 [binder, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
r:9 [binder, in Coq.Reals.R_Ifp]
R:9 [binder, in Coq.Classes.Morphisms_Prop]
R:9 [binder, in Coq.Classes.RelationClasses]
r:9 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyAbs]
R:9 [binder, in Coq.Reals.Abstract.ConstructivePower]
r:9 [binder, in Coq.Floats.FloatOps]
R:9 [binder, in Coq.setoid_ring.Ncring_tac]
r:9 [binder, in Coq.MSets.MSetAVL]
r:9 [binder, in Coq.ZArith.Zdiv]
R:9 [binder, in Coq.Classes.EquivDec]
R:9 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:90 [binder, in Coq.Arith.PeanoNat]
R:90 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:90 [binder, in Coq.Reals.Rbasic_fun]
R:90 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:907 [binder, in Coq.Init.Specif]
R:907 [binder, in Coq.Init.Logic]
R:91 [binder, in Coq.Classes.RelationClasses]
R:91 [binder, in Coq.Classes.CRelationClasses]
r:91 [binder, in Coq.Reals.Rbasic_fun]
r:915 [binder, in Coq.Init.Logic]
r:92 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:92 [binder, in Coq.Numbers.Integer.Abstract.ZDivEucl]
R:92 [binder, in Coq.setoid_ring.Ncring_tac]
r:92 [binder, in Coq.MSets.MSetGenTree]
r:92 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:92 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:923 [binder, in Coq.Init.Logic]
R:93 [binder, in Coq.Classes.RelationClasses]
r:93 [binder, in Coq.Reals.PSeries_reg]
r:93 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
R:931 [binder, in Coq.Init.Logic]
R:937 [binder, in Coq.Init.Specif]
R:94 [binder, in Coq.Classes.CMorphisms]
r:940 [binder, in Coq.Init.Specif]
r:940 [binder, in Coq.FSets.FMapAVL]
r:948 [binder, in Coq.FSets.FMapAVL]
R:95 [binder, in Coq.Classes.RelationClasses]
r:95 [binder, in Coq.Reals.Cauchy.ConstructiveCauchyAbs]
R:95 [binder, in Coq.Reals.Abstract.ConstructiveSum]
r:95 [binder, in Coq.micromega.ZifyInst]
R:950 [binder, in Coq.Init.Specif]
r:952 [binder, in Coq.Init.Logic]
r:954 [binder, in Coq.FSets.FMapAVL]
R:958 [binder, in Coq.Init.Specif]
R:958 [binder, in Coq.Init.Logic]
r:96 [binder, in Coq.ZArith.BinIntDef]
R:96 [binder, in Coq.Reals.Abstract.ConstructiveLimits]
r:96 [binder, in Coq.MSets.MSetGenTree]
R:96 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
r:96 [binder, in Coq.Reals.ClassicalDedekindReals]
r:960 [binder, in Coq.FSets.FMapAVL]
R:966 [binder, in Coq.Init.Specif]
r:966 [binder, in Coq.FSets.FMapAVL]
r:969 [binder, in Coq.Init.Specif]
R:97 [binder, in Coq.Classes.RelationClasses]
R:97 [binder, in Coq.Classes.Morphisms]
R:97 [binder, in Coq.Classes.CMorphisms]
r:972 [binder, in Coq.FSets.FMapAVL]
r:978 [binder, in Coq.FSets.FMapAVL]
R:979 [binder, in Coq.Init.Specif]
r:98 [binder, in Coq.Reals.Abstract.ConstructiveLUB]
r:98 [binder, in Coq.PArith.BinPosDef]
r:98 [binder, in Coq.micromega.ZifyInst]
r:982 [binder, in Coq.Init.Specif]
r:99 [binder, in Coq.ZArith.BinIntDef]
R:99 [binder, in Coq.Classes.RelationClasses]
r:99 [binder, in Coq.Arith.PeanoNat]
r:99 [binder, in Coq.Reals.Abstract.ConstructiveMinMax]
R:994 [binder, in Coq.Init.Specif]
r:997 [binder, in Coq.Init.Specif]
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (72745 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1016 entries) |
Binder Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (47313 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (784 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1547 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (583 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (11764 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (959 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (627 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (308 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (475 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (492 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (903 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1448 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (4360 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (166 entries) |