Library Coq.micromega.RMicromega
Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import Raxioms Rfunctions RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.
Require Import Qreals.
Require Import DeclConstant.
Require Setoid.
Definition Rsrt : ring_theory R0 R1 Rplus Rmult Rminus Ropp (@eq R).
Open Scope R_scope.
Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt.
Lemma Rinv_1 : forall x, x * / 1 = x.
Lemma Qeq_true : forall x y, Qeq_bool x y = true -> Q2R x = Q2R y.
Lemma Qeq_false : forall x y, Qeq_bool x y = false -> Q2R x <> Q2R y.
Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> Q2R x <= Q2R y.
Lemma Q2R_0 : Q2R 0 = 0.
Lemma Q2R_1 : Q2R 1 = 1.
Lemma Q2R_inv_ext : forall x,
Q2R (/ x) = (if Qeq_bool x 0 then 0 else / Q2R x).
Notation to_nat := N.to_nat.
Lemma QSORaddon :
@SORaddon R
R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle
Q 0%Q 1%Q Qplus Qmult Qminus Qopp
Qeq_bool Qle_bool
Q2R nat to_nat pow.
Inductive Rcst :=
| C0
| C1
| CQ (r : Q)
| CZ (r : Z)
| CPlus (r1 r2 : Rcst)
| CMinus (r1 r2 : Rcst)
| CMult (r1 r2 : Rcst)
| CPow (r1 : Rcst) (z:Z+nat)
| CInv (r : Rcst)
| COpp (r : Rcst).
Definition z_of_exp (z : Z + nat) :=
match z with
| inl z => z
| inr n => Z.of_nat n
end.
Fixpoint Q_of_Rcst (r : Rcst) : Q :=
match r with
| C0 => 0 # 1
| C1 => 1 # 1
| CZ z => z # 1
| CQ q => q
| CPlus r1 r2 => Qplus (Q_of_Rcst r1) (Q_of_Rcst r2)
| CMinus r1 r2 => Qminus (Q_of_Rcst r1) (Q_of_Rcst r2)
| CMult r1 r2 => Qmult (Q_of_Rcst r1) (Q_of_Rcst r2)
| CPow r1 z => Qpower (Q_of_Rcst r1) (z_of_exp z)
| CInv r => Qinv (Q_of_Rcst r)
| COpp r => Qopp (Q_of_Rcst r)
end.
Definition is_neg (z: Z+nat) :=
match z with
| inl (Zneg _) => true
| _ => false
end.
Lemma is_neg_true : forall z, is_neg z = true -> (z_of_exp z < 0)%Z.
Lemma is_neg_false : forall z, is_neg z = false -> (z_of_exp z >= 0)%Z.
Definition CInvR0 (r : Rcst) := Qeq_bool (Q_of_Rcst r) (0 # 1).
Definition CPowR0 (z : Z) (r : Rcst) :=
Z.ltb z Z0 && Qeq_bool (Q_of_Rcst r) (0 # 1).
Fixpoint R_of_Rcst (r : Rcst) : R :=
match r with
| C0 => R0
| C1 => R1
| CZ z => IZR z
| CQ q => Q2R q
| CPlus r1 r2 => (R_of_Rcst r1) + (R_of_Rcst r2)
| CMinus r1 r2 => (R_of_Rcst r1) - (R_of_Rcst r2)
| CMult r1 r2 => (R_of_Rcst r1) * (R_of_Rcst r2)
| CPow r1 z =>
match z with
| inl z =>
if CPowR0 z r1
then R0
else powerRZ (R_of_Rcst r1) z
| inr n => pow (R_of_Rcst r1) n
end
| CInv r =>
if CInvR0 r then R0
else Rinv (R_of_Rcst r)
| COpp r => - (R_of_Rcst r)
end.
Add Morphism Q2R with signature Qeq ==> @eq R as Q2R_m.
Qed.
Lemma Q2R_pow_pos : forall q p,
Q2R (pow_pos Qmult q p) = pow_pos Rmult (Q2R q) p.
Lemma Q2R_pow_N : forall q n,
Q2R (pow_N 1%Q Qmult q n) = pow_N 1 Rmult (Q2R q) n.
Lemma Qmult_integral : forall q r, q * r == 0 -> q == 0 \/ r == 0.
Lemma Qpower_positive_eq_zero : forall q p,
Qpower_positive q p == 0 -> q == 0.
Lemma Qpower_positive_zero : forall p,
Qpower_positive 0 p == 0%Q.
Lemma Q2RpowerRZ :
forall q z
(DEF : not (q == 0)%Q \/ (z >= Z0)%Z),
Q2R (q ^ z) = powerRZ (Q2R q) z.
Lemma Qpower0 : forall z, (z <> 0)%Z -> (0 ^ z == 0)%Q.
Lemma Q_of_RcstR : forall c, Q2R (Q_of_Rcst c) = R_of_Rcst c.
Require Import EnvRing.
Definition INZ (n:N) : R :=
match n with
| N0 => IZR 0%Z
| Npos p => IZR (Zpos p)
end.
Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst N.to_nat pow.
Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
match o with
| OpEq => @eq R
| OpNEq => fun x y => ~ x = y
| OpLe => Rle
| OpGe => Rge
| OpLt => Rlt
| OpGt => Rgt
end.
Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) :=
let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).
Definition Reval_formula' :=
eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt N.to_nat pow R_of_Rcst.
Definition QReval_formula :=
eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt Q2R N.to_nat pow .
Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
Definition Qeval_nformula :=
eval_nformula 0 Rplus Rmult (@eq R) Rle Rlt Q2R.
Lemma Reval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Definition RWitness := Psatz Q.
Definition RWeakChecker := check_normalised_formulas 0%Q 1%Q Qplus Qmult Qeq_bool Qle_bool.
Require Import List.
Lemma RWeakChecker_sound : forall (l : list (NFormula Q)) (cm : RWitness),
RWeakChecker l cm = true ->
forall env, make_impl (Qeval_nformula env) l False.
Require Import Coq.micromega.Tauto.
Definition Rnormalise := @cnf_normalise Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition Rnegate := @cnf_negate Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition runsat := check_inconsistent 0%Q Qeq_bool Qle_bool.
Definition rdeduce := nformula_plus_nformula 0%Q Qplus Qeq_bool.
Definition RTautoChecker (f : BFormula (Formula Rcst)) (w: list RWitness) : bool :=
@tauto_checker (Formula Q) (NFormula Q)
unit runsat rdeduce
(Rnormalise unit) (Rnegate unit)
RWitness (fun cl => RWeakChecker (List.map fst cl)) (map_bformula (map_Formula Q_of_Rcst) f) w.
Lemma RTautoChecker_sound : forall f w, RTautoChecker f w = true -> forall env, eval_bf (Reval_formula env) f.