Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (22221 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (923 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (744 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1480 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (501 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10364 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (910 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (573 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (386 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (286 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (465 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (632 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1133 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (3679 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (145 entries) |
S
S [module, in Coq.FSets.FMapInterface]S [module, in Coq.MSets.MSetInterface]
S [module, in Coq.FSets.FSetInterface]
S [constructor, in Coq.Init.Datatypes]
S [section, in Coq.micromega.Tauto]
S [section, in Coq.micromega.Tauto]
S [section, in Coq.micromega.Env]
sameP [lemma, in Coq.ssr.ssrbool]
same_relation_is_equivalence [lemma, in Coq.Sets.Relations_1_facts]
same_genZ [lemma, in Coq.setoid_ring.Ncring_initial]
same_gen [lemma, in Coq.setoid_ring.Ncring_initial]
same_genN [lemma, in Coq.setoid_ring.InitialRing]
same_genZ [lemma, in Coq.setoid_ring.InitialRing]
same_gen [lemma, in Coq.setoid_ring.InitialRing]
same_relation [definition, in Coq.Sets.Relations_1]
same_relation [definition, in Coq.Relations.Relation_Definitions]
Same_set [definition, in Coq.Sets.Ensembles]
scal_sum [lemma, in Coq.Reals.PartSum]
SCANNING [section, in Coq.Vectors.VectorDef]
SCHEMES [section, in Coq.Vectors.Fin]
SCHEMES [section, in Coq.Vectors.VectorDef]
Sdep [module, in Coq.FSets.FSetInterface]
Sdep.add [axiom, in Coq.FSets.FSetInterface]
Sdep.Add [definition, in Coq.FSets.FSetInterface]
Sdep.cardinal [axiom, in Coq.FSets.FSetInterface]
Sdep.choose [axiom, in Coq.FSets.FSetInterface]
Sdep.choose_equal [axiom, in Coq.FSets.FSetInterface]
Sdep.compare [axiom, in Coq.FSets.FSetInterface]
Sdep.diff [axiom, in Coq.FSets.FSetInterface]
Sdep.E [module, in Coq.FSets.FSetInterface]
Sdep.elements [axiom, in Coq.FSets.FSetInterface]
Sdep.elt [definition, in Coq.FSets.FSetInterface]
Sdep.empty [axiom, in Coq.FSets.FSetInterface]
Sdep.Empty [definition, in Coq.FSets.FSetInterface]
Sdep.eq [definition, in Coq.FSets.FSetInterface]
Sdep.equal [axiom, in Coq.FSets.FSetInterface]
Sdep.Equal [definition, in Coq.FSets.FSetInterface]
Sdep.eq_In [axiom, in Coq.FSets.FSetInterface]
Sdep.eq_trans [axiom, in Coq.FSets.FSetInterface]
Sdep.eq_sym [axiom, in Coq.FSets.FSetInterface]
Sdep.eq_refl [axiom, in Coq.FSets.FSetInterface]
Sdep.Exists [definition, in Coq.FSets.FSetInterface]
Sdep.exists_ [axiom, in Coq.FSets.FSetInterface]
Sdep.filter [axiom, in Coq.FSets.FSetInterface]
Sdep.fold [axiom, in Coq.FSets.FSetInterface]
Sdep.for_all [axiom, in Coq.FSets.FSetInterface]
Sdep.For_all [definition, in Coq.FSets.FSetInterface]
Sdep.In [axiom, in Coq.FSets.FSetInterface]
Sdep.inter [axiom, in Coq.FSets.FSetInterface]
Sdep.is_empty [axiom, in Coq.FSets.FSetInterface]
Sdep.lt [axiom, in Coq.FSets.FSetInterface]
Sdep.lt_not_eq [axiom, in Coq.FSets.FSetInterface]
Sdep.lt_trans [axiom, in Coq.FSets.FSetInterface]
Sdep.max_elt [axiom, in Coq.FSets.FSetInterface]
Sdep.mem [axiom, in Coq.FSets.FSetInterface]
Sdep.min_elt [axiom, in Coq.FSets.FSetInterface]
Sdep.partition [axiom, in Coq.FSets.FSetInterface]
Sdep.remove [axiom, in Coq.FSets.FSetInterface]
Sdep.singleton [axiom, in Coq.FSets.FSetInterface]
Sdep.subset [axiom, in Coq.FSets.FSetInterface]
Sdep.Subset [definition, in Coq.FSets.FSetInterface]
Sdep.t [axiom, in Coq.FSets.FSetInterface]
Sdep.union [axiom, in Coq.FSets.FSetInterface]
_ [=] _ [notation, in Coq.FSets.FSetInterface]
self_inverse [definition, in Coq.ssr.ssrfun]
Seminus_Empty_set_r [lemma, in Coq.Sets.Powerset_facts]
Seminus_Empty_set_l [lemma, in Coq.Sets.Powerset_facts]
semi_field_theory [record, in Coq.setoid_ring.Field_theory]
semi_morph [record, in Coq.setoid_ring.Ring_theory]
semi_ring_theory [record, in Coq.setoid_ring.Ring_theory]
sEmpty [inductive, in Coq.Logic.StrictProp]
seq [definition, in Coq.Sets.Uniset]
seq [definition, in Coq.Lists.List]
SeqProp [library]
SeqSeries [library]
sequence [section, in Coq.Reals.Rseries]
sequence_minorant [abbreviation, in Coq.Reals.SeqProp]
sequence_majorant [abbreviation, in Coq.Reals.SeqProp]
sequence_lb [definition, in Coq.Reals.SeqProp]
sequence_ub [definition, in Coq.Reals.SeqProp]
sequence.Un [variable, in Coq.Reals.Rseries]
seq_congr [lemma, in Coq.Sets.Uniset]
seq_right [lemma, in Coq.Sets.Uniset]
seq_left [lemma, in Coq.Sets.Uniset]
seq_sym [lemma, in Coq.Sets.Uniset]
seq_trans [lemma, in Coq.Sets.Uniset]
seq_refl [lemma, in Coq.Sets.Uniset]
seq_app [lemma, in Coq.Lists.List]
seq_NoDup [lemma, in Coq.Lists.List]
seq_shift [lemma, in Coq.Lists.List]
seq_nth [lemma, in Coq.Lists.List]
seq_length [lemma, in Coq.Lists.List]
Seq_trans [definition, in Coq.Setoids.Setoid]
Seq_sym [definition, in Coq.Setoids.Setoid]
Seq_refl [definition, in Coq.Setoids.Setoid]
set [definition, in Coq.Lists.ListSet]
setcover_intro [lemma, in Coq.Sets.Powerset_facts]
setcover_inv [lemma, in Coq.Sets.Powerset_Classical_facts]
SetIncl [section, in Coq.Lists.List]
SetIncl.A [variable, in Coq.Lists.List]
SetIsType [library]
Setminus [definition, in Coq.Sets.Ensembles]
Setminus_intro [lemma, in Coq.Sets.Constructive_sets]
Setminus_Included_empty [lemma, in Coq.Sets.Powerset_facts]
Setminus_Disjoint_noop [lemma, in Coq.Sets.Powerset_facts]
Setminus_Union_r [lemma, in Coq.Sets.Powerset_facts]
Setminus_Union_l [lemma, in Coq.Sets.Powerset_facts]
Setoid [record, in Coq.Classes.SetoidClass]
Setoid [library]
SetoidChoice [library]
SetoidClass [library]
SetoidDec [library]
SetoidFunctionalChoice [abbreviation, in Coq.Logic.ChoiceFacts]
SetoidFunctionalChoice_on [definition, in Coq.Logic.ChoiceFacts]
SetoidList [library]
SetoidPermutation [library]
SetoidTactics [library]
setoid_functional_choice_second_characterization [lemma, in Coq.Logic.ChoiceFacts]
setoid_functional_choice_first_characterization [lemma, in Coq.Logic.ChoiceFacts]
setoid_fun_choice_imp_repr_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
setoid_fun_choice_imp_functional_rel_reification [lemma, in Coq.Logic.ChoiceFacts]
setoid_fun_choice_imp_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
setoid_fun_choice_iff_simple_setoid_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
setoid_fun_choice_imp_simple_setoid_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
setoid_fun_choice_iff_gen_setoid_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
setoid_fun_choice_imp_gen_setoid_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
setoid_partial_app_morphism [instance, in Coq.Classes.SetoidClass]
setoid_morphism [instance, in Coq.Classes.SetoidClass]
setoid_trans [definition, in Coq.Classes.SetoidClass]
setoid_sym [definition, in Coq.Classes.SetoidClass]
setoid_refl [definition, in Coq.Classes.SetoidClass]
setoid_equiv [projection, in Coq.Classes.SetoidClass]
setoid_decidable [projection, in Coq.Classes.SetoidDec]
setoid_decidable [constructor, in Coq.Classes.SetoidDec]
setoid_choice [lemma, in Coq.Logic.SetoidChoice]
setoid_decidable [projection, in Coq.Classes.EquivDec]
setoid_decidable [constructor, in Coq.Classes.EquivDec]
Setoid_Theory [definition, in Coq.Setoids.Setoid]
Sets [module, in Coq.MSets.MSetInterface]
SetsOn [module, in Coq.MSets.MSetInterface]
SetsOn.choose_spec3 [axiom, in Coq.MSets.MSetInterface]
SetsOn.compare_spec [axiom, in Coq.MSets.MSetInterface]
SetsOn.elements_spec2 [axiom, in Coq.MSets.MSetInterface]
SetsOn.max_elt_spec3 [axiom, in Coq.MSets.MSetInterface]
SetsOn.max_elt_spec2 [axiom, in Coq.MSets.MSetInterface]
SetsOn.max_elt_spec1 [axiom, in Coq.MSets.MSetInterface]
SetsOn.min_elt_spec3 [axiom, in Coq.MSets.MSetInterface]
SetsOn.min_elt_spec2 [axiom, in Coq.MSets.MSetInterface]
SetsOn.min_elt_spec1 [axiom, in Coq.MSets.MSetInterface]
SetsOn.Spec [section, in Coq.MSets.MSetInterface]
SetsOn.Spec.s [variable, in Coq.MSets.MSetInterface]
SetsOn.Spec.s' [variable, in Coq.MSets.MSetInterface]
SetsOn.Spec.x [variable, in Coq.MSets.MSetInterface]
SetsOn.Spec.y [variable, in Coq.MSets.MSetInterface]
Sets_as_an_algebra.U [variable, in Coq.Sets.Powerset_facts]
Sets_as_an_algebra [section, in Coq.Sets.Powerset_facts]
Sets_as_an_algebra.U [variable, in Coq.Sets.Powerset_Classical_facts]
Sets_as_an_algebra [section, in Coq.Sets.Powerset_Classical_facts]
Sets.E [module, in Coq.MSets.MSetInterface]
set_digit [definition, in Coq.Numbers.Cyclic.Int63.Int63]
set_map [definition, in Coq.Lists.ListSet]
set_fold_right [definition, in Coq.Lists.ListSet]
set_fold_left [definition, in Coq.Lists.ListSet]
set_power [definition, in Coq.Lists.ListSet]
set_prod [definition, in Coq.Lists.ListSet]
set_diff_trivial [lemma, in Coq.Lists.ListSet]
set_diff_nodup [lemma, in Coq.Lists.ListSet]
set_diff_iff [lemma, in Coq.Lists.ListSet]
set_diff_elim2 [lemma, in Coq.Lists.ListSet]
set_diff_elim1 [lemma, in Coq.Lists.ListSet]
set_diff_intro [lemma, in Coq.Lists.ListSet]
set_inter_nodup [lemma, in Coq.Lists.ListSet]
set_inter_iff [lemma, in Coq.Lists.ListSet]
set_inter_elim [lemma, in Coq.Lists.ListSet]
set_inter_elim2 [lemma, in Coq.Lists.ListSet]
set_inter_elim1 [lemma, in Coq.Lists.ListSet]
set_inter_intro [lemma, in Coq.Lists.ListSet]
set_union_emptyR [lemma, in Coq.Lists.ListSet]
set_union_emptyL [lemma, in Coq.Lists.ListSet]
set_union_nodup [lemma, in Coq.Lists.ListSet]
set_union_iff [lemma, in Coq.Lists.ListSet]
set_union_elim [lemma, in Coq.Lists.ListSet]
set_union_intro [lemma, in Coq.Lists.ListSet]
set_union_intro2 [lemma, in Coq.Lists.ListSet]
set_union_intro1 [lemma, in Coq.Lists.ListSet]
set_remove_nodup [lemma, in Coq.Lists.ListSet]
set_remove_iff [lemma, in Coq.Lists.ListSet]
set_remove_3 [lemma, in Coq.Lists.ListSet]
set_remove_2 [lemma, in Coq.Lists.ListSet]
set_remove_1 [lemma, in Coq.Lists.ListSet]
set_add_nodup [lemma, in Coq.Lists.ListSet]
set_add_iff [lemma, in Coq.Lists.ListSet]
set_add_not_empty [lemma, in Coq.Lists.ListSet]
set_add_elim2 [lemma, in Coq.Lists.ListSet]
set_add_elim [lemma, in Coq.Lists.ListSet]
set_add_intro [lemma, in Coq.Lists.ListSet]
set_add_intro2 [lemma, in Coq.Lists.ListSet]
set_add_intro1 [lemma, in Coq.Lists.ListSet]
set_mem_complete2 [lemma, in Coq.Lists.ListSet]
set_mem_complete1 [lemma, in Coq.Lists.ListSet]
set_mem_correct2 [lemma, in Coq.Lists.ListSet]
set_mem_correct1 [lemma, in Coq.Lists.ListSet]
set_mem_ind2 [lemma, in Coq.Lists.ListSet]
set_mem_ind [lemma, in Coq.Lists.ListSet]
set_In_dec [lemma, in Coq.Lists.ListSet]
set_In [definition, in Coq.Lists.ListSet]
set_diff [definition, in Coq.Lists.ListSet]
set_union [definition, in Coq.Lists.ListSet]
set_inter [definition, in Coq.Lists.ListSet]
set_remove [definition, in Coq.Lists.ListSet]
set_mem [definition, in Coq.Lists.ListSet]
set_add [definition, in Coq.Lists.ListSet]
Sexists [constructor, in Coq.Logic.StrictProp]
SFdiv_def [projection, in Coq.setoid_ring.Field_theory]
SFinv_l [projection, in Coq.setoid_ring.Field_theory]
SFL [definition, in Coq.Reals.PSeries_reg]
SFL_continuity [lemma, in Coq.Reals.PSeries_reg]
SFL_continuity_pt [lemma, in Coq.Reals.PSeries_reg]
Sfun [module, in Coq.FSets.FMapInterface]
Sfun [module, in Coq.FSets.FSetInterface]
Sfun.choose_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.compare [axiom, in Coq.FSets.FSetInterface]
Sfun.elements_3 [axiom, in Coq.FSets.FMapInterface]
Sfun.elements_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.elt [section, in Coq.FSets.FMapInterface]
Sfun.elt.elt [variable, in Coq.FSets.FMapInterface]
Sfun.lt [axiom, in Coq.FSets.FSetInterface]
Sfun.lt_key [definition, in Coq.FSets.FMapInterface]
Sfun.lt_not_eq [axiom, in Coq.FSets.FSetInterface]
Sfun.lt_trans [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt_2 [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt_1 [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt_2 [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt_1 [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt [axiom, in Coq.FSets.FSetInterface]
Sfun.Spec [section, in Coq.FSets.FSetInterface]
Sfun.Spec.s [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.s' [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.s'' [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.x [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.y [variable, in Coq.FSets.FSetInterface]
SF_1_neq_0 [projection, in Coq.setoid_ring.Field_theory]
SF_SR [projection, in Coq.setoid_ring.Field_theory]
SF2AF [definition, in Coq.setoid_ring.Field_theory]
shift [definition, in Coq.ZArith.Zpower]
shift [definition, in Coq.Strings.Ascii]
shiftin [definition, in Coq.Vectors.VectorDef]
shiftin_last [lemma, in Coq.Vectors.VectorSpec]
shiftin_nth [lemma, in Coq.Vectors.VectorSpec]
shiftl [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
shiftl [definition, in Coq.Numbers.Cyclic.Int31.Int31]
shiftl [definition, in Coq.Init.Nat]
shiftl_spec_low [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
shiftl_spec_high [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
shiftout [definition, in Coq.Vectors.VectorDef]
shiftr [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
shiftr [definition, in Coq.Numbers.Cyclic.Int31.Int31]
shiftr [definition, in Coq.Init.Nat]
shiftrepeat [definition, in Coq.Vectors.VectorDef]
shiftrepeat_last [lemma, in Coq.Vectors.VectorSpec]
shiftrepeat_nth [lemma, in Coq.Vectors.VectorSpec]
shiftr_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
shift_unshift_mod_2 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
shift_pos_correct [lemma, in Coq.ZArith.Zpower]
shift_pos_nat [lemma, in Coq.ZArith.Zpower]
shift_nat_correct [lemma, in Coq.ZArith.Zpower]
shift_nat_plus [lemma, in Coq.ZArith.Zpower]
shift_equiv [lemma, in Coq.ZArith.Zpower]
shift_pos_equiv [lemma, in Coq.ZArith.Zpower]
shift_nat_equiv [lemma, in Coq.ZArith.Zpower]
shift_pos [definition, in Coq.ZArith.Zpower]
shift_nat [definition, in Coq.ZArith.Zpower]
shift_unshift_mod_3 [lemma, in Coq.Numbers.Cyclic.Int63.Cyclic63]
shift_unshift_mod_2 [lemma, in Coq.Numbers.Cyclic.Int63.Cyclic63]
sig [section, in Coq.Init.Specif]
sig [inductive, in Coq.Init.Specif]
Sig [section, in Coq.ssr.ssrfun]
sigma [definition, in Coq.Reals.Rsigma]
Sigma [section, in Coq.Reals.Rsigma]
sigma_eq_arg [lemma, in Coq.Reals.Rsigma]
sigma_last [lemma, in Coq.Reals.Rsigma]
sigma_first [lemma, in Coq.Reals.Rsigma]
sigma_diff_neg [lemma, in Coq.Reals.Rsigma]
sigma_diff [lemma, in Coq.Reals.Rsigma]
sigma_split [lemma, in Coq.Reals.Rsigma]
Sigma.f [variable, in Coq.Reals.Rsigma]
Signed [module, in Coq.Numbers.DecimalPos]
Signed [module, in Coq.Numbers.DecimalNat]
Signed [module, in Coq.Numbers.DecimalN]
Signed.of_inj_pos [lemma, in Coq.Numbers.DecimalPos]
Signed.of_int_norm [lemma, in Coq.Numbers.DecimalPos]
Signed.of_to [lemma, in Coq.Numbers.DecimalPos]
Signed.of_inj_pos [lemma, in Coq.Numbers.DecimalNat]
Signed.of_int_norm [lemma, in Coq.Numbers.DecimalNat]
Signed.of_to [lemma, in Coq.Numbers.DecimalNat]
Signed.of_inj_pos [lemma, in Coq.Numbers.DecimalN]
Signed.of_int_norm [lemma, in Coq.Numbers.DecimalN]
Signed.of_to [lemma, in Coq.Numbers.DecimalN]
Signed.to_int_pos_surj [lemma, in Coq.Numbers.DecimalPos]
Signed.to_int_inj [lemma, in Coq.Numbers.DecimalPos]
Signed.to_of [lemma, in Coq.Numbers.DecimalPos]
Signed.to_int_pos_surj [lemma, in Coq.Numbers.DecimalNat]
Signed.to_int_inj [lemma, in Coq.Numbers.DecimalNat]
Signed.to_of [lemma, in Coq.Numbers.DecimalNat]
Signed.to_int_pos_surj [lemma, in Coq.Numbers.DecimalN]
Signed.to_int_inj [lemma, in Coq.Numbers.DecimalN]
Signed.to_of [lemma, in Coq.Numbers.DecimalN]
sign_spec [projection, in Coq.setoid_ring.Ring_theory]
sign_theory [record, in Coq.setoid_ring.Ring_theory]
sigT [section, in Coq.Init.Specif]
sigT [inductive, in Coq.Init.Specif]
sigT_of_sigT2_eq [definition, in Coq.Init.Specif]
sigT_eta [definition, in Coq.Init.Specif]
sigT_of_sig [definition, in Coq.Init.Specif]
sigT_of_sigT2 [definition, in Coq.Init.Specif]
(= _ ; _ ) [notation, in Coq.Init.Specif]
sigT2 [section, in Coq.Init.Specif]
sigT2 [inductive, in Coq.Init.Specif]
sigT2_eta [definition, in Coq.Init.Specif]
sigT2_of_sig2 [definition, in Coq.Init.Specif]
sig_of_sig2_eq [definition, in Coq.Init.Specif]
sig_eta [definition, in Coq.Init.Specif]
sig_of_sigT [definition, in Coq.Init.Specif]
sig_of_sig2 [definition, in Coq.Init.Specif]
sig_not_dec [lemma, in Coq.Reals.Rlogic]
sig_forall_dec [lemma, in Coq.Reals.Rlogic]
Sig.P [variable, in Coq.ssr.ssrfun]
Sig.Q [variable, in Coq.ssr.ssrfun]
Sig.T [variable, in Coq.ssr.ssrfun]
sig2 [section, in Coq.Init.Specif]
sig2 [inductive, in Coq.Init.Specif]
sig2_eta [definition, in Coq.Init.Specif]
sig2_of_sigT2 [definition, in Coq.Init.Specif]
SimpleMergeExample [definition, in Coq.Sorting.Mergesort]
SimpleSetoidFunctionalChoice [abbreviation, in Coq.Logic.ChoiceFacts]
SimpleSetoidFunctionalChoice_on [definition, in Coq.Logic.ChoiceFacts]
simple_setoid_fun_choice_imp_setoid_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
SimplFun [section, in Coq.ssr.ssrfun]
SimplFun [constructor, in Coq.ssr.ssrfun]
SimplFunDelta [definition, in Coq.ssr.ssrfun]
SimplFun.aT [variable, in Coq.ssr.ssrfun]
SimplFun.rT [variable, in Coq.ssr.ssrfun]
simplification_K [lemma, in Coq.Program.Equality]
simplification_existT1 [lemma, in Coq.Program.Equality]
simplification_existT2 [lemma, in Coq.Program.Equality]
simplification_heq [lemma, in Coq.Program.Equality]
Simplify_add [lemma, in Coq.Sets.Powerset_Classical_facts]
SimplPred [definition, in Coq.ssr.ssrbool]
SimplRel [definition, in Coq.ssr.ssrbool]
simpl_sin_n [lemma, in Coq.Reals.Rtrigo_def]
simpl_cos_n [lemma, in Coq.Reals.Rtrigo_def]
simpl_predE [lemma, in Coq.ssr.ssrbool]
simpl_pred_value [projection, in Coq.ssr.ssrbool]
simpl_rel [definition, in Coq.ssr.ssrbool]
simpl_pred [definition, in Coq.ssr.ssrbool]
simpl_fun [inductive, in Coq.ssr.ssrfun]
simpl_cone [definition, in Coq.micromega.RingMicromega]
simpl_fact [lemma, in Coq.Reals.Rfunctions]
sin [definition, in Coq.Reals.Rtrigo_def]
SIN [lemma, in Coq.Reals.Rtrigo1]
sincl_add_x [lemma, in Coq.Sets.Powerset_Classical_facts]
sind [definition, in Coq.Reals.Rtrigo_calc]
Singleton [definition, in Coq.Sets.Uniset]
singleton [definition, in Coq.micromega.VarMap]
Singleton [inductive, in Coq.Sets.Ensembles]
SingletonBag [definition, in Coq.Sets.Multiset]
Singleton_is_finite [lemma, in Coq.Sets.Finite_sets_facts]
Singleton_intro [lemma, in Coq.Sets.Constructive_sets]
Singleton_inv [lemma, in Coq.Sets.Constructive_sets]
singleton_choice [lemma, in Coq.Logic.ClassicalChoice]
Singleton_atomic [lemma, in Coq.Sets.Powerset_Classical_facts]
single_z_r_R1 [lemma, in Coq.Reals.RIneq]
single_limit [lemma, in Coq.Reals.Rlimit]
singlx [lemma, in Coq.Sets.Powerset_facts]
sinh [definition, in Coq.Reals.Rtrigo_def]
sinh_0 [lemma, in Coq.Reals.Rtrigo_def]
sinh_lt [lemma, in Coq.Reals.Ranalysis4]
sinh_arcsinh [lemma, in Coq.Reals.Rpower]
sin_lb_ge_0 [lemma, in Coq.Reals.Rtrigo_calc]
sin_cos5PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_5PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_2PI3 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI3 [lemma, in Coq.Reals.Rtrigo_calc]
sin_3PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI6 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI6_cos_PI3 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI3_cos_PI6 [lemma, in Coq.Reals.Rtrigo_calc]
sin_cos_PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_3PI2 [lemma, in Coq.Reals.Rtrigo_calc]
sin_0 [lemma, in Coq.Reals.Rtrigo_def]
sin_antisym [lemma, in Coq.Reals.Rtrigo_def]
sin_in [definition, in Coq.Reals.Rtrigo_def]
sin_no_R0 [lemma, in Coq.Reals.Rtrigo_def]
sin_n [definition, in Coq.Reals.Rtrigo_def]
sin_approx [definition, in Coq.Reals.Rtrigo_alt]
sin_term [definition, in Coq.Reals.Rtrigo_alt]
sin_eq_O_2PI_1 [lemma, in Coq.Reals.Rtrigo1]
sin_eq_O_2PI_0 [lemma, in Coq.Reals.Rtrigo1]
sin_eq_0_0 [lemma, in Coq.Reals.Rtrigo1]
sin_eq_0_1 [lemma, in Coq.Reals.Rtrigo1]
sin_decr_1 [lemma, in Coq.Reals.Rtrigo1]
sin_decr_0 [lemma, in Coq.Reals.Rtrigo1]
sin_incr_1 [lemma, in Coq.Reals.Rtrigo1]
sin_incr_0 [lemma, in Coq.Reals.Rtrigo1]
sin_decreasing_1 [lemma, in Coq.Reals.Rtrigo1]
sin_decreasing_0 [lemma, in Coq.Reals.Rtrigo1]
sin_increasing_1 [lemma, in Coq.Reals.Rtrigo1]
sin_increasing_0 [lemma, in Coq.Reals.Rtrigo1]
sin_lt_0_var [lemma, in Coq.Reals.Rtrigo1]
sin_lt_0 [lemma, in Coq.Reals.Rtrigo1]
sin_le_0 [lemma, in Coq.Reals.Rtrigo1]
sin_ge_0 [lemma, in Coq.Reals.Rtrigo1]
sin_gt_0 [lemma, in Coq.Reals.Rtrigo1]
sin_lb_gt_0 [lemma, in Coq.Reals.Rtrigo1]
sin_ub [definition, in Coq.Reals.Rtrigo1]
sin_lb [definition, in Coq.Reals.Rtrigo1]
SIN_bound [lemma, in Coq.Reals.Rtrigo1]
sin_shift [lemma, in Coq.Reals.Rtrigo1]
sin_period [lemma, in Coq.Reals.Rtrigo1]
sin_PI_x [lemma, in Coq.Reals.Rtrigo1]
sin_2PI [lemma, in Coq.Reals.Rtrigo1]
sin_neg [lemma, in Coq.Reals.Rtrigo1]
sin_2a [lemma, in Coq.Reals.Rtrigo1]
sin_minus [lemma, in Coq.Reals.Rtrigo1]
sin_plus [lemma, in Coq.Reals.Rtrigo1]
sin_cos [lemma, in Coq.Reals.Rtrigo1]
sin_bound [lemma, in Coq.Reals.Rtrigo1]
sin_PI [lemma, in Coq.Reals.Rtrigo1]
sin_PI2 [lemma, in Coq.Reals.Rtrigo1]
sin_pos_tech [lemma, in Coq.Reals.Rtrigo1]
sin_gt_cos_7_8 [lemma, in Coq.Reals.Rtrigo1]
sin2 [lemma, in Coq.Reals.Rtrigo1]
sin2_cos2 [lemma, in Coq.Reals.Rtrigo1]
sin3PI4 [abbreviation, in Coq.Reals.Rtrigo_calc]
size [definition, in Coq.Numbers.Cyclic.Int63.Int63]
size [definition, in Coq.Numbers.Cyclic.Int31.Int31]
skipn [definition, in Coq.Lists.List]
skipn_rev [lemma, in Coq.Lists.List]
skipn_app [lemma, in Coq.Lists.List]
skipn_all [lemma, in Coq.Lists.List]
skipn_length [lemma, in Coq.Lists.List]
skipn_all2 [lemma, in Coq.Lists.List]
skipn_none [lemma, in Coq.Lists.List]
skipn_cons [lemma, in Coq.Lists.List]
skipn_nil [lemma, in Coq.Lists.List]
skipn_O [lemma, in Coq.Lists.List]
skipn_firstn_comm [lemma, in Coq.Lists.List]
SmallDrinker'sParadox [definition, in Coq.Logic.ChoiceFacts]
small_drinkers'_paradox [lemma, in Coq.Logic.Epsilon]
Smorph_morph [lemma, in Coq.setoid_ring.Ring_theory]
Smorph_sub [lemma, in Coq.setoid_ring.Ring_theory]
Smorph_opp [lemma, in Coq.setoid_ring.Ring_theory]
Smorph_eq [projection, in Coq.setoid_ring.Ring_theory]
Smorph_mul [projection, in Coq.setoid_ring.Ring_theory]
Smorph_add [projection, in Coq.setoid_ring.Ring_theory]
Smorph0 [projection, in Coq.setoid_ring.Ring_theory]
Smorph1 [projection, in Coq.setoid_ring.Ring_theory]
Snd [abbreviation, in Coq.Classes.RelationPairs]
snd [definition, in Coq.Init.Datatypes]
SndRel_sub [instance, in Coq.Classes.RelationPairs]
SndRel_ProdRel [lemma, in Coq.Classes.RelationPairs]
sndT [abbreviation, in Coq.Init.Datatypes]
snd_compat [instance, in Coq.Classes.RelationPairs]
snd_measure [instance, in Coq.Classes.RelationPairs]
sneakl [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sneakl_shiftr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sneakr [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sneakr_shiftl [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
solution_right [lemma, in Coq.Program.Equality]
solution_left [lemma, in Coq.Program.Equality]
sol_x2 [definition, in Coq.Reals.R_sqrt]
sol_x1 [definition, in Coq.Reals.R_sqrt]
some [abbreviation, in Coq.ssr.ssrfun]
Some [constructor, in Coq.Init.Datatypes]
Some_inj [lemma, in Coq.ssr.ssrfun]
SOR [record, in Coq.micromega.OrderedRing]
SORaddon [record, in Coq.micromega.RingMicromega]
SORcleb_morph [projection, in Coq.micromega.RingMicromega]
SORcneqb_morph [projection, in Coq.micromega.RingMicromega]
Sord [module, in Coq.FSets.FMapInterface]
Sord.cmp [definition, in Coq.FSets.FMapInterface]
Sord.compare [axiom, in Coq.FSets.FMapInterface]
Sord.Data [module, in Coq.FSets.FMapInterface]
Sord.eq [axiom, in Coq.FSets.FMapInterface]
Sord.eq_2 [axiom, in Coq.FSets.FMapInterface]
Sord.eq_1 [axiom, in Coq.FSets.FMapInterface]
Sord.eq_trans [axiom, in Coq.FSets.FMapInterface]
Sord.eq_sym [axiom, in Coq.FSets.FMapInterface]
Sord.eq_refl [axiom, in Coq.FSets.FMapInterface]
Sord.lt [axiom, in Coq.FSets.FMapInterface]
Sord.lt_not_eq [axiom, in Coq.FSets.FMapInterface]
Sord.lt_trans [axiom, in Coq.FSets.FMapInterface]
Sord.MapS [module, in Coq.FSets.FMapInterface]
Sord.t [definition, in Coq.FSets.FMapInterface]
SORle_trans [projection, in Coq.micromega.OrderedRing]
SORle_antisymm [projection, in Coq.micromega.OrderedRing]
SORle_refl [projection, in Coq.micromega.OrderedRing]
SORle_wd [projection, in Coq.micromega.OrderedRing]
SORlt_trichotomy [projection, in Coq.micromega.OrderedRing]
SORlt_le_neq [projection, in Coq.micromega.OrderedRing]
SORlt_wd [projection, in Coq.micromega.OrderedRing]
SORneq_0_1 [projection, in Coq.micromega.OrderedRing]
SORopp_wd [projection, in Coq.micromega.OrderedRing]
SORplus_le_mono_l [projection, in Coq.micromega.OrderedRing]
SORplus_wd [projection, in Coq.micromega.OrderedRing]
SORpower [projection, in Coq.micromega.RingMicromega]
SORrm [projection, in Coq.micromega.RingMicromega]
SORrt [projection, in Coq.micromega.OrderedRing]
SORsetoid [projection, in Coq.micromega.OrderedRing]
Sort [module, in Coq.Sorting.Mergesort]
sort [abbreviation, in Coq.Sorting.Sorted]
SortA [abbreviation, in Coq.Lists.SetoidList]
SortA_equivlistA_eqlistA [lemma, in Coq.Lists.SetoidList]
SortA_NoDupA [lemma, in Coq.Lists.SetoidList]
SortA_app [lemma, in Coq.Lists.SetoidList]
SortA_InfA_InA [lemma, in Coq.Lists.SetoidList]
Sorted [inductive, in Coq.Sorting.Sorted]
Sorted [library]
Sorted_StronglySorted [lemma, in Coq.Sorting.Sorted]
Sorted_extends [lemma, in Coq.Sorting.Sorted]
Sorted_LocallySorted_iff [lemma, in Coq.Sorting.Sorted]
Sorted_rect [lemma, in Coq.Sorting.Sorted]
Sorted_inv [lemma, in Coq.Sorting.Sorted]
Sorted_cons [constructor, in Coq.Sorting.Sorted]
Sorted_nil [constructor, in Coq.Sorting.Sorted]
SORtimes_pos_pos [projection, in Coq.micromega.OrderedRing]
SORtimes_wd [projection, in Coq.micromega.OrderedRing]
Sorting [library]
sort_rect [abbreviation, in Coq.Sorting.Sorted]
sort_inv [abbreviation, in Coq.Sorting.Sorted]
Sort.flatten_stack [definition, in Coq.Sorting.Mergesort]
Sort.iter_merge [definition, in Coq.Sorting.Mergesort]
Sort.LocallySorted_sort [lemma, in Coq.Sorting.Mergesort]
Sort.merge [definition, in Coq.Sorting.Mergesort]
Sort.merge_stack [definition, in Coq.Sorting.Mergesort]
Sort.merge_list_to_stack [definition, in Coq.Sorting.Mergesort]
Sort.Permuted_sort [lemma, in Coq.Sorting.Mergesort]
Sort.Permuted_iter_merge [lemma, in Coq.Sorting.Mergesort]
Sort.Permuted_merge_stack [lemma, in Coq.Sorting.Mergesort]
Sort.Permuted_merge_list_to_stack [lemma, in Coq.Sorting.Mergesort]
Sort.Permuted_merge [lemma, in Coq.Sorting.Mergesort]
Sort.sort [definition, in Coq.Sorting.Mergesort]
Sort.Sorted [abbreviation, in Coq.Sorting.Mergesort]
Sort.SortedStack [definition, in Coq.Sorting.Mergesort]
Sort.Sorted_sort [lemma, in Coq.Sorting.Mergesort]
Sort.Sorted_iter_merge [lemma, in Coq.Sorting.Mergesort]
Sort.Sorted_merge_stack [lemma, in Coq.Sorting.Mergesort]
Sort.Sorted_merge_list_to_stack [lemma, in Coq.Sorting.Mergesort]
Sort.Sorted_merge [lemma, in Coq.Sorting.Mergesort]
Sort.StronglySorted_sort [lemma, in Coq.Sorting.Mergesort]
SP [definition, in Coq.Reals.PartSum]
Space [definition, in Coq.Strings.Ascii]
Specif [library]
Specific_orders.U [variable, in Coq.Sets.Cpo]
Specific_orders [section, in Coq.Sets.Cpo]
spec_lxor [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_land [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_lor [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_is_even [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_eq0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sqrt2 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sqrt [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_tail0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_tail00 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_head0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_head00 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pos_mod [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_mul_div [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_gcd [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mod [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_div [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_div21 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_square_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mul [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mul_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pred [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pred_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp_carry [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_carry [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_carry_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_succ [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_carry [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_carry_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_succ_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_compare [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_m1 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_1 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_more_than_1_digit [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_zdigits [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_lxor [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_land [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_lor [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_tail0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_tail00 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_head0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_head00 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sqrt2 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sqrt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_is_even [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pos_mod [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_mul_div [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div21 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_gcd_gt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_gcd [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_modulo_gt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_modulo [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div_gt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_square_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_mul [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_mul_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_carry [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pred [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_carry_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pred_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_carry [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_succ [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_carry_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_succ_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp_carry [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_eq0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_compare [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_Bm1 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_1 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_zdigits [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_of_pos [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z_2 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z_1 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_more_than_1_digit [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
split [definition, in Coq.setoid_ring.Field_theory]
split [definition, in Coq.Lists.List]
SplitAbsolu [library]
splitat [definition, in Coq.Vectors.VectorDef]
splitat_append [lemma, in Coq.Vectors.VectorSpec]
SplitRmult [library]
split_lt_succ [lemma, in Coq.Reals.Runcountable]
split_couple_eq [lemma, in Coq.Reals.Runcountable]
split_nz_r [lemma, in Coq.setoid_ring.Field_theory]
split_nz_l [lemma, in Coq.setoid_ring.Field_theory]
split_ok_r [lemma, in Coq.setoid_ring.Field_theory]
split_ok_l [lemma, in Coq.setoid_ring.Field_theory]
split_aux_ok [lemma, in Coq.setoid_ring.Field_theory]
split_aux_ok1 [lemma, in Coq.setoid_ring.Field_theory]
split_aux [definition, in Coq.setoid_ring.Field_theory]
split_combine [lemma, in Coq.Lists.List]
split_length_r [lemma, in Coq.Lists.List]
split_length_l [lemma, in Coq.Lists.List]
split_nth [lemma, in Coq.Lists.List]
Splus_lt [lemma, in Coq.funind.Recdef]
Spr1 [projection, in Coq.Logic.StrictProp]
Spr1_inj [lemma, in Coq.Logic.StrictProp]
Spr2 [projection, in Coq.Logic.StrictProp]
sp_swap [constructor, in Coq.Relations.Relation_Operators]
sp_noswap [constructor, in Coq.Relations.Relation_Operators]
Sqrt [module, in Coq.Numbers.NatInt.NZSqrt]
sqrt [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
sqrt [definition, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
sqrt [definition, in Coq.Init.Nat]
sqrt [definition, in Coq.Reals.R_sqrt]
SqrtNotation [module, in Coq.Numbers.NatInt.NZSqrt]
√ _ [notation, in Coq.Numbers.NatInt.NZSqrt]
sqrtrempos [definition, in Coq.ZArith.Zsqrt_compat]
sqrt_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
sqrt_iter_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
sqrt_iter [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
sqrt_test_false [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_test_true [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_init [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_main [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_main_trick [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_init [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_step_correct [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_test_true [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_test_false [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_main [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_main_trick [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_step [definition, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt_data [inductive, in Coq.ZArith.Zsqrt_compat]
sqrt_iter [definition, in Coq.Init.Nat]
sqrt_continuity_pt [lemma, in Coq.Reals.Sqrt_reg]
sqrt_continuity_pt_R1 [lemma, in Coq.Reals.Sqrt_reg]
sqrt_var_maj [lemma, in Coq.Reals.Sqrt_reg]
sqrt_cauchy [lemma, in Coq.Reals.R_sqrt]
sqrt_more [lemma, in Coq.Reals.R_sqrt]
sqrt_less [lemma, in Coq.Reals.R_sqrt]
sqrt_less_alt [lemma, in Coq.Reals.R_sqrt]
sqrt_inj [lemma, in Coq.Reals.R_sqrt]
sqrt_le_1 [lemma, in Coq.Reals.R_sqrt]
sqrt_le_1_alt [lemma, in Coq.Reals.R_sqrt]
sqrt_le_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_1 [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_1_alt [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_0_alt [lemma, in Coq.Reals.R_sqrt]
sqrt_div [lemma, in Coq.Reals.R_sqrt]
sqrt_div_alt [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_R0 [lemma, in Coq.Reals.R_sqrt]
sqrt_mult [lemma, in Coq.Reals.R_sqrt]
sqrt_mult_alt [lemma, in Coq.Reals.R_sqrt]
sqrt_Rsqr_abs [lemma, in Coq.Reals.R_sqrt]
sqrt_pow2 [lemma, in Coq.Reals.R_sqrt]
sqrt_Rsqr [lemma, in Coq.Reals.R_sqrt]
sqrt_square [lemma, in Coq.Reals.R_sqrt]
sqrt_def [lemma, in Coq.Reals.R_sqrt]
sqrt_lem_1 [lemma, in Coq.Reals.R_sqrt]
sqrt_lem_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_eq_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_1 [lemma, in Coq.Reals.R_sqrt]
sqrt_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_sqrt [lemma, in Coq.Reals.R_sqrt]
sqrt_positivity [lemma, in Coq.Reals.R_sqrt]
sqrt_pos [lemma, in Coq.Reals.R_sqrt]
Sqrt_reg [library]
Sqrt' [module, in Coq.Numbers.NatInt.NZSqrt]
Sqrt.sqrt [axiom, in Coq.Numbers.NatInt.NZSqrt]
sqrt2 [definition, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt2 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
sqrt2_neq_0 [lemma, in Coq.Reals.Rtrigo_calc]
sqrt2_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt2_step_correct [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt2_lower_bound [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt2_step_def [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt2_step [definition, in Coq.Numbers.Cyclic.Int63.Int63]
sqrt3_2_neq_0 [lemma, in Coq.Reals.Rtrigo_calc]
sqrt31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqrt31_step_correct [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt31_step_def [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt31_step [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqrt312 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqrt312_step_correct [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_lower_bound [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_step_def [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_step [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqr_pos [lemma, in Coq.ZArith.Zcomplements]
square [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
square [definition, in Coq.Init.Nat]
squarec_spec [lemma, in Coq.Numbers.Cyclic.Int63.Cyclic63]
square_spec [abbreviation, in Coq.Numbers.Natural.Peano.NPeano]
square_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
square_not_prime [lemma, in Coq.ZArith.Znumtheory]
squash [constructor, in Coq.Logic.StrictProp]
Squash [inductive, in Coq.Logic.StrictProp]
SRadd_ext [projection, in Coq.setoid_ring.Ring_theory]
SRadd_assoc [projection, in Coq.setoid_ring.Ring_theory]
SRadd_comm [projection, in Coq.setoid_ring.Ring_theory]
SRadd_0_l [projection, in Coq.setoid_ring.Ring_theory]
SRdistr_l [projection, in Coq.setoid_ring.Ring_theory]
SReqe_Reqe [lemma, in Coq.setoid_ring.Ring_theory]
SRIDmorph [definition, in Coq.setoid_ring.Ring_theory]
sring_eq_ext [record, in Coq.setoid_ring.Ring_theory]
SRmorph_Rmorph [lemma, in Coq.setoid_ring.Ring_theory]
SRmul_ext [projection, in Coq.setoid_ring.Ring_theory]
SRmul_assoc [projection, in Coq.setoid_ring.Ring_theory]
SRmul_comm [projection, in Coq.setoid_ring.Ring_theory]
SRmul_0_l [projection, in Coq.setoid_ring.Ring_theory]
SRmul_1_l [projection, in Coq.setoid_ring.Ring_theory]
SRopp [definition, in Coq.setoid_ring.Ring_theory]
SRopp_add [lemma, in Coq.setoid_ring.Ring_theory]
SRopp_mul_l [lemma, in Coq.setoid_ring.Ring_theory]
SRopp_ext [lemma, in Coq.setoid_ring.Ring_theory]
SRsub [definition, in Coq.setoid_ring.Ring_theory]
SRsub_def [lemma, in Coq.setoid_ring.Ring_theory]
SRth_ARth [lemma, in Coq.setoid_ring.Ring_theory]
Ssig [record, in Coq.Logic.StrictProp]
SSorted_cons [constructor, in Coq.Sorting.Sorted]
SSorted_nil [constructor, in Coq.Sorting.Sorted]
SSplus_lt [lemma, in Coq.funind.Recdef]
ssrbool [library]
ssreflect [library]
ssrfun [library]
ssrmatching [library]
SsrMatchingSyntax [module, in Coq.ssrmatching.ssrmatching]
SsrMatchingSyntax.LHS [abbreviation, in Coq.ssrmatching.ssrmatching]
SsrMatchingSyntax.RHS [abbreviation, in Coq.ssrmatching.ssrmatching]
( _ in _ ) (ssrpatternscope) [notation, in Coq.ssrmatching.ssrmatching]
SsrSyntax [module, in Coq.ssr.ssreflect]
ssr_congr_arrow [lemma, in Coq.ssr.ssreflect]
ssr_wlog [definition, in Coq.ssr.ssreflect]
ssr_suff [definition, in Coq.ssr.ssreflect]
ssr_have_let [definition, in Coq.ssr.ssreflect]
ssr_have [definition, in Coq.ssr.ssreflect]
ssr_converse [definition, in Coq.ssr.ssreflect]
Sstar_contains_Rstar [lemma, in Coq.Sets.Relations_2_facts]
star_monotone [lemma, in Coq.Sets.Relations_2_facts]
Step [abbreviation, in Coq.NArith.Ndigits]
StepFun [record, in Coq.Reals.RiemannInt_SF]
StepFun_P46 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P45 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P44 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P43 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P42 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P41 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P40 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P39 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P38 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P37 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P36 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P35 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P34 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P33 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P32 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P31 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P30 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P29 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P28 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P27 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P26 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P25 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P24 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P23 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P22 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P21 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P20 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P19 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P18 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P17 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P16 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P15 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P14 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P13 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P12 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P11 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P10 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P9 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P8 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P7 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P6 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P5 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P4 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P3 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P2 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P1 [lemma, in Coq.Reals.RiemannInt_SF]
stop [constructor, in Coq.Logic.ConstructiveEpsilon]
Store [record, in Coq.rtauto.Bintree]
Store [section, in Coq.rtauto.Bintree]
Store.A [variable, in Coq.rtauto.Bintree]
Stream [abbreviation, in Coq.Lists.Streams]
Stream [inductive, in Coq.Lists.Streams]
StreamMemo [library]
Streams [section, in Coq.Lists.Streams]
Streams [library]
Streams.A [variable, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll.InvIsStable [variable, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll.InvThenP [variable, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll.Inv [variable, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll [section, in Coq.Lists.Streams]
Streams.Stream_Properties.P [variable, in Coq.Lists.Streams]
Streams.Stream_Properties [section, in Coq.Lists.Streams]
Streicher_K__eq_rect_eq [lemma, in Coq.Logic.EqdepFacts]
Streicher_K_on__eq_rect_eq_on [lemma, in Coq.Logic.EqdepFacts]
Streicher_K_ [definition, in Coq.Logic.EqdepFacts]
Streicher_K_on_ [definition, in Coq.Logic.EqdepFacts]
Strict [constructor, in Coq.micromega.RingMicromega]
strictincreasing_strictdecreasing_opp [lemma, in Coq.Reals.MVT]
StrictOrder [record, in Coq.Classes.CRelationClasses]
StrictOrder [record, in Coq.Classes.RelationClasses]
StrictOrder_PartialOrder [lemma, in Coq.Classes.Morphisms]
StrictOrder_PreOrder [lemma, in Coq.Classes.Morphisms]
StrictOrder_Asymmetric [instance, in Coq.Classes.CRelationClasses]
StrictOrder_Transitive [projection, in Coq.Classes.CRelationClasses]
StrictOrder_Irreflexive [projection, in Coq.Classes.CRelationClasses]
StrictOrder_Asymmetric [instance, in Coq.Classes.RelationClasses]
StrictOrder_Transitive [projection, in Coq.Classes.RelationClasses]
StrictOrder_Irreflexive [projection, in Coq.Classes.RelationClasses]
StrictOrder_PartialOrder [lemma, in Coq.Classes.CMorphisms]
StrictOrder_PreOrder [lemma, in Coq.Classes.CMorphisms]
StrictProp [library]
Strict_Rel_Transitive [lemma, in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel_left [lemma, in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel [lemma, in Coq.Sets.Partial_Order]
Strict_Rel_of [definition, in Coq.Sets.Partial_Order]
Strict_Included_inv [lemma, in Coq.Sets.Classical_sets]
Strict_super_set_contains_new_element [lemma, in Coq.Sets.Classical_sets]
strict_decreasing [definition, in Coq.Reals.Ranalysis1]
strict_increasing [definition, in Coq.Reals.Ranalysis1]
Strict_Included_strict [lemma, in Coq.Sets.Constructive_sets]
Strict_Included_intro [lemma, in Coq.Sets.Constructive_sets]
_ < _ [notation, in Coq.micromega.OrderedRing]
_ <= _ [notation, in Coq.micromega.OrderedRing]
_ ~= _ [notation, in Coq.micromega.OrderedRing]
_ == _ [notation, in Coq.micromega.OrderedRing]
- _ [notation, in Coq.micromega.OrderedRing]
_ - _ [notation, in Coq.micromega.OrderedRing]
_ * _ [notation, in Coq.micromega.OrderedRing]
_ + _ [notation, in Coq.micromega.OrderedRing]
1 [notation, in Coq.micromega.OrderedRing]
0 [notation, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.sor [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.rlt [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.rle [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.req [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.ropp [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.rminus [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.rtimes [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.rplus [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.rI [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.rO [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING.R [variable, in Coq.micromega.OrderedRing]
STRICT_ORDERED_RING [section, in Coq.micromega.OrderedRing]
Strict_Included [definition, in Coq.Sets.Ensembles]
Strict_inclusion_is_transitive [lemma, in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion_left [lemma, in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion [lemma, in Coq.Sets.Powerset]
Strict_Rel_is_Strict_Included [lemma, in Coq.Sets.Powerset]
String [constructor, in Coq.Strings.String]
string [inductive, in Coq.Strings.String]
String [library]
StringSyntax [module, in Coq.Strings.String]
string_of_list_byte_of_string [lemma, in Coq.Strings.String]
string_of_list_byte [definition, in Coq.Strings.String]
string_of_list_ascii_of_string [lemma, in Coq.Strings.String]
string_of_list_ascii [definition, in Coq.Strings.String]
string_dec [definition, in Coq.Strings.String]
String_as_OT.eq_dec [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT.compare [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT.lt_not_eq [lemma, in Coq.Structures.OrderedTypeEx]
String_as_OT.lt_trans [lemma, in Coq.Structures.OrderedTypeEx]
String_as_OT.lts_tail_unique [lemma, in Coq.Structures.OrderedTypeEx]
String_as_OT.nat_of_ascii_inverse [lemma, in Coq.Structures.OrderedTypeEx]
String_as_OT.lt [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT.lts_head [constructor, in Coq.Structures.OrderedTypeEx]
String_as_OT.lts_tail [constructor, in Coq.Structures.OrderedTypeEx]
String_as_OT.lts_empty [constructor, in Coq.Structures.OrderedTypeEx]
String_as_OT.lts [inductive, in Coq.Structures.OrderedTypeEx]
String_as_OT.eq_trans [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT.eq_sym [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT.eq_refl [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT.eq [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT.t [definition, in Coq.Structures.OrderedTypeEx]
String_as_OT [module, in Coq.Structures.OrderedTypeEx]
strip_commut [lemma, in Coq.Wellfounded.Union]
StronglySorted [inductive, in Coq.Sorting.Sorted]
StronglySorted_Sorted [lemma, in Coq.Sorting.Sorted]
StronglySorted_rec [lemma, in Coq.Sorting.Sorted]
StronglySorted_rect [lemma, in Coq.Sorting.Sorted]
StronglySorted_inv [lemma, in Coq.Sorting.Sorted]
Strongly_confluent [definition, in Coq.Sets.Relations_2]
Strong_confluence_direct [lemma, in Coq.Sets.Relations_3_facts]
Strong_confluence [lemma, in Coq.Sets.Relations_3_facts]
StrOrder [module, in Coq.Structures.Orders]
StrOrder' [module, in Coq.Structures.Orders]
Str_nth_zipWith [lemma, in Coq.Lists.Streams]
Str_nth_tl_zipWith [lemma, in Coq.Lists.Streams]
Str_nth_map [lemma, in Coq.Lists.Streams]
Str_nth_tl_map [lemma, in Coq.Lists.Streams]
Str_nth_plus [lemma, in Coq.Lists.Streams]
Str_nth_tl_plus [lemma, in Coq.Lists.Streams]
Str_nth [definition, in Coq.Lists.Streams]
Str_nth_tl [definition, in Coq.Lists.Streams]
stt [constructor, in Coq.Logic.StrictProp]
sub [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
sub [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
sub [definition, in Coq.Init.Nat]
subc [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
subcarry [definition, in Coq.Numbers.Cyclic.Int63.Int63]
subcarryc [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
subcarryc_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
subcarryc_def_spec [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
subcarryc_def [definition, in Coq.Numbers.Cyclic.Int63.Int63]
subcarry_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
subc_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
subc_def_spec [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
subc_def [definition, in Coq.Numbers.Cyclic.Int63.Int63]
subdivision [definition, in Coq.Reals.RiemannInt_SF]
subdivision_val [definition, in Coq.Reals.RiemannInt_SF]
SubEqui [definition, in Coq.Reals.RiemannInt]
SubEquiN [definition, in Coq.Reals.RiemannInt]
SubEqui_P9 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P8 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P7 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P6 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P5 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P4 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P3 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P2 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P1 [lemma, in Coq.Reals.RiemannInt]
subfamily [definition, in Coq.Reals.Rtopology]
subon_bij [lemma, in Coq.ssr.ssrbool]
subon1 [lemma, in Coq.ssr.ssrbool]
subon1l [lemma, in Coq.ssr.ssrbool]
subon2 [lemma, in Coq.ssr.ssrbool]
subpred [definition, in Coq.ssr.ssrbool]
subrel [definition, in Coq.ssr.ssrbool]
subrelation [definition, in Coq.Init.Logic]
subrelation [record, in Coq.Classes.CRelationClasses]
subrelation [inductive, in Coq.Classes.CRelationClasses]
subrelation [record, in Coq.Classes.RelationClasses]
subrelation [inductive, in Coq.Classes.RelationClasses]
subrelation_proper [lemma, in Coq.Classes.Morphisms]
subrelation_refl [lemma, in Coq.Classes.Morphisms]
subrelation_respectful [lemma, in Coq.Classes.Morphisms]
subrelation_id_proper [instance, in Coq.Classes.Morphisms]
subrelation_symmetric [lemma, in Coq.Classes.CRelationClasses]
subrelation_pointwise [instance, in Coq.Classes.Morphisms_Relations]
subrelation_partial_order [instance, in Coq.Classes.RelationClasses]
subrelation_symmetric [lemma, in Coq.Classes.RelationClasses]
subrelation_proper [lemma, in Coq.Classes.CMorphisms]
subrelation_refl [lemma, in Coq.Classes.CMorphisms]
subrelation_respectful [lemma, in Coq.Classes.CMorphisms]
subrelation_id_proper [instance, in Coq.Classes.CMorphisms]
subrelUl [lemma, in Coq.ssr.ssrbool]
subrelUr [lemma, in Coq.ssr.ssrbool]
subset [definition, in Coq.Logic.ClassicalChoice]
Subset [library]
subset_types_imp_guarded_rel_choice_iff_rel_choice [lemma, in Coq.Logic.ChoiceFacts]
Subset_projections2.Q [variable, in Coq.Init.Specif]
Subset_projections2.P [variable, in Coq.Init.Specif]
Subset_projections2.A [variable, in Coq.Init.Specif]
Subset_projections2 [section, in Coq.Init.Specif]
Subset_projections.P [variable, in Coq.Init.Specif]
Subset_projections.A [variable, in Coq.Init.Specif]
Subset_projections [section, in Coq.Init.Specif]
subset_eq [lemma, in Coq.Program.Subset]
substring [definition, in Coq.Strings.String]
substring_correct2 [lemma, in Coq.Strings.String]
substring_correct1 [lemma, in Coq.Strings.String]
Subtract [definition, in Coq.Sets.Ensembles]
subtraction [projection, in Coq.setoid_ring.Algebra_syntax]
Subtraction [record, in Coq.setoid_ring.Algebra_syntax]
subtraction [constructor, in Coq.setoid_ring.Algebra_syntax]
Subtraction [inductive, in Coq.setoid_ring.Algebra_syntax]
Subtract_inv [lemma, in Coq.Sets.Classical_sets]
Subtract_intro [lemma, in Coq.Sets.Classical_sets]
sub_spec [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
sub_carry [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
sub_carry_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
sub_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
sub_in21 [lemma, in Coq.ssr.ssrbool]
sub_in12 [lemma, in Coq.ssr.ssrbool]
sub_in3 [lemma, in Coq.ssr.ssrbool]
sub_in2 [lemma, in Coq.ssr.ssrbool]
sub_in_bij [lemma, in Coq.ssr.ssrbool]
sub_in111 [lemma, in Coq.ssr.ssrbool]
sub_in11 [lemma, in Coq.ssr.ssrbool]
sub_in1 [lemma, in Coq.ssr.ssrbool]
sub_refl [lemma, in Coq.ssr.ssrbool]
sub_mem [definition, in Coq.ssr.ssrbool]
sub_notation [instance, in Coq.setoid_ring.Ncring]
Sub_Add_new [lemma, in Coq.Sets.Powerset_Classical_facts]
sub31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sub31c [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sub31carryc [definition, in Coq.Numbers.Cyclic.Int31.Int31]
succ [definition, in Coq.Numbers.Cyclic.Int63.Int63]
succ [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
succ [definition, in Coq.Init.Nat]
succc [definition, in Coq.Numbers.Cyclic.Int63.Int63]
succc_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
SuccNat2Pos [module, in Coq.PArith.Pnat]
SuccNat2Pos.id_succ [lemma, in Coq.PArith.Pnat]
SuccNat2Pos.inj [lemma, in Coq.PArith.Pnat]
SuccNat2Pos.inj_compare [lemma, in Coq.PArith.Pnat]
SuccNat2Pos.inj_succ [lemma, in Coq.PArith.Pnat]
SuccNat2Pos.inj_iff [lemma, in Coq.PArith.Pnat]
SuccNat2Pos.inv [lemma, in Coq.PArith.Pnat]
SuccNat2Pos.pred_id [lemma, in Coq.PArith.Pnat]
succ_IZR [lemma, in Coq.Reals.RIneq]
succ_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
succ_max_distr [definition, in Coq.Arith.Max]
succ_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
succ_plus_discr [lemma, in Coq.Arith.Plus]
succ_min_distr [definition, in Coq.Arith.Min]
sum [inductive, in Coq.Init.Datatypes]
sumbool [inductive, in Coq.Init.Specif]
Sumbool [library]
sumboolP [lemma, in Coq.ssr.ssrbool]
sumbool_not [definition, in Coq.Bool.Sumbool]
sumbool_or [definition, in Coq.Bool.Sumbool]
sumbool_and [definition, in Coq.Bool.Sumbool]
sumbool_of_bool [definition, in Coq.Bool.Sumbool]
sumor [inductive, in Coq.Init.Specif]
sum_inequa_Rle_lt [lemma, in Coq.Reals.RIneq]
sum_plus [lemma, in Coq.Reals.Cauchy_prod]
sum_N_predN [lemma, in Coq.Reals.Cauchy_prod]
sum_cv_maj [lemma, in Coq.Reals.PartSum]
sum_incr [lemma, in Coq.Reals.PartSum]
sum_eq_R0 [lemma, in Coq.Reals.PartSum]
sum_growing [lemma, in Coq.Reals.PartSum]
sum_cte [lemma, in Coq.Reals.PartSum]
sum_Rle [lemma, in Coq.Reals.PartSum]
sum_decomposition [lemma, in Coq.Reals.PartSum]
sum_eq [lemma, in Coq.Reals.PartSum]
sum_maj1 [lemma, in Coq.Reals.SeqSeries]
sum_f_R0_triangle [lemma, in Coq.Reals.Rfunctions]
sum_f [definition, in Coq.Reals.Rfunctions]
sum_f_R0 [definition, in Coq.Reals.Rfunctions]
sum_nat [definition, in Coq.Reals.Rfunctions]
sum_nat_O [definition, in Coq.Reals.Rfunctions]
sum_nat_f [definition, in Coq.Reals.Rfunctions]
sum_nat_f_O [definition, in Coq.Reals.Rfunctions]
sum_Ratan_seq_opp [lemma, in Coq.Reals.Ratan]
sum_eqdec [instance, in Coq.Classes.EquivDec]
sUnit [inductive, in Coq.Logic.StrictProp]
sUnit_ind [definition, in Coq.Logic.StrictProp]
sUnit_rec [definition, in Coq.Logic.StrictProp]
sUnit_rect [definition, in Coq.Logic.StrictProp]
sup [constructor, in Coq.Wellfounded.Well_Ordering]
Surjective [definition, in Coq.Logic.FinFun]
surjective_pairing [lemma, in Coq.Init.Datatypes]
Surjective_inverse [lemma, in Coq.Logic.FinFun]
Surjective_carac [lemma, in Coq.Logic.FinFun]
Surjective_list_carac [lemma, in Coq.Logic.FinFun]
sval [abbreviation, in Coq.ssr.ssrfun]
svalP [lemma, in Coq.ssr.ssrfun]
Swap [section, in Coq.Wellfounded.Lexicographic_Product]
Swap [section, in Coq.Relations.Relation_Operators]
SwapProd [abbreviation, in Coq.Wellfounded.Lexicographic_Product]
swapprod [inductive, in Coq.Relations.Relation_Operators]
swap_Acc [lemma, in Coq.Wellfounded.Lexicographic_Product]
swap_sumbool [definition, in Coq.Classes.SetoidDec]
swap_sumbool [definition, in Coq.Classes.EquivDec]
Swap.A [variable, in Coq.Wellfounded.Lexicographic_Product]
Swap.A [variable, in Coq.Relations.Relation_Operators]
Swap.R [variable, in Coq.Wellfounded.Lexicographic_Product]
Swap.R [variable, in Coq.Relations.Relation_Operators]
SWithLeibniz [module, in Coq.MSets.MSetList]
SWithLeibniz.E [module, in Coq.MSets.MSetList]
SWithLeibniz.eq_leibniz [axiom, in Coq.MSets.MSetList]
Symmetric [record, in Coq.Classes.CRelationClasses]
Symmetric [inductive, in Coq.Classes.CRelationClasses]
symmetric [definition, in Coq.ssr.ssrbool]
Symmetric [definition, in Coq.Sets.Relations_1]
symmetric [definition, in Coq.Relations.Relation_Definitions]
Symmetric [record, in Coq.Classes.RelationClasses]
Symmetric [inductive, in Coq.Classes.RelationClasses]
symmetric_equiv_flip [lemma, in Coq.Classes.Morphisms]
symmetric_from_pre [lemma, in Coq.ssr.ssrbool]
Symmetric_Product.leB [variable, in Coq.Relations.Relation_Operators]
Symmetric_Product.leA [variable, in Coq.Relations.Relation_Operators]
Symmetric_Product.B [variable, in Coq.Relations.Relation_Operators]
Symmetric_Product.A [variable, in Coq.Relations.Relation_Operators]
Symmetric_Product [section, in Coq.Relations.Relation_Operators]
symmetric_equiv_flip [lemma, in Coq.Classes.CMorphisms]
symmetry [projection, in Coq.Classes.CRelationClasses]
symmetry [constructor, in Coq.Classes.CRelationClasses]
symmetry [projection, in Coq.Classes.RelationClasses]
symmetry [constructor, in Coq.Classes.RelationClasses]
Symprod [abbreviation, in Coq.Wellfounded.Lexicographic_Product]
symprod [inductive, in Coq.Relations.Relation_Operators]
sym_EqSt [lemma, in Coq.Lists.Streams]
sym_JMeq [abbreviation, in Coq.Logic.JMeq]
sym_not_equal [abbreviation, in Coq.Init.Logic]
sym_equal [abbreviation, in Coq.Init.Logic]
sym_not_eq [abbreviation, in Coq.Init.Logic]
sym_eq [abbreviation, in Coq.Init.Logic]
sym_right_transitive [lemma, in Coq.ssr.ssrbool]
sym_left_transitive [lemma, in Coq.ssr.ssrbool]
sym_not_id [abbreviation, in Coq.Init.Logic_Type]
sym_id [abbreviation, in Coq.Init.Logic_Type]
SYM1 [abbreviation, in Coq.ZArith.BinInt]
SYM2 [abbreviation, in Coq.ZArith.BinInt]
SYM3 [abbreviation, in Coq.ZArith.BinInt]
Syntax [library]
S_O_plus_INR [lemma, in Coq.Reals.RIneq]
S_INR [lemma, in Coq.Reals.RIneq]
S_to_Finite_set [module, in Coq.MSets.MSetToFiniteSet]
S_to_Finite_set [module, in Coq.FSets.FSetToFiniteSet]
S_pred_pos [lemma, in Coq.Arith.Lt]
S_pred [lemma, in Coq.Arith.Lt]
S.Annot [variable, in Coq.micromega.Tauto]
S.checker [variable, in Coq.micromega.Tauto]
S.checker_sound [variable, in Coq.micromega.Tauto]
S.CNFAnnot [section, in Coq.micromega.Tauto]
S.D [variable, in Coq.micromega.Env]
S.deduce [variable, in Coq.micromega.Tauto]
S.deduce_prop [variable, in Coq.micromega.Tauto]
S.E [module, in Coq.FSets.FMapInterface]
S.E [module, in Coq.FSets.FSetInterface]
S.Env [variable, in Coq.micromega.Tauto]
S.eval [variable, in Coq.micromega.Tauto]
S.EVAL [section, in Coq.micromega.Tauto]
S.eval' [variable, in Coq.micromega.Tauto]
S.EVAL.ea [variable, in Coq.micromega.Tauto]
S.ex [variable, in Coq.micromega.Tauto]
S.FOLDANNOT [section, in Coq.micromega.Tauto]
S.FOLDANNOT.ACC [variable, in Coq.micromega.Tauto]
S.FOLDANNOT.F [variable, in Coq.micromega.Tauto]
S.MAPX [section, in Coq.micromega.Tauto]
S.MAPX.F [variable, in Coq.micromega.Tauto]
S.negate [variable, in Coq.micromega.Tauto]
S.negate_correct [variable, in Coq.micromega.Tauto]
S.normalise [variable, in Coq.micromega.Tauto]
S.normalise_correct [variable, in Coq.micromega.Tauto]
S.no_middle_eval' [variable, in Coq.micromega.Tauto]
S.Term [variable, in Coq.micromega.Tauto]
S.Term' [variable, in Coq.micromega.Tauto]
S.unsat [variable, in Coq.micromega.Tauto]
S.unsat_prop [variable, in Coq.micromega.Tauto]
S.Witness [variable, in Coq.micromega.Tauto]
s2val [definition, in Coq.ssr.ssrfun]
s2valP [lemma, in Coq.ssr.ssrfun]
s2valP' [lemma, in Coq.ssr.ssrfun]
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (22221 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (923 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (744 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1480 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (501 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10364 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (910 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (573 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (386 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (286 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (465 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (632 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1133 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (3679 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (145 entries) |