Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (25958 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (999 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (811 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1769 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (587 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (11879 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (960 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (508 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (307 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (479 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (495 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (905 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1199 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4894 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (166 entries)

N (definition)

nan [in Coq.Floats.PrimFloat]
napply_discard [in Coq.Numbers.NaryFunctions]
napply_then_last [in Coq.Numbers.NaryFunctions]
napply_except_last [in Coq.Numbers.NaryFunctions]
napply_cst [in Coq.Numbers.NaryFunctions]
nary_congruence_statement [in Coq.ssr.ssreflect]
NatOrder.leb [in Coq.Sorting.Mergesort]
NatOrder.t [in Coq.Sorting.Mergesort]
nat_noteq_bool [in Coq.Arith.Bool_nat]
nat_eq_bool [in Coq.Arith.Bool_nat]
nat_gt_le_bool [in Coq.Arith.Bool_nat]
nat_le_gt_bool [in Coq.Arith.Bool_nat]
nat_ge_lt_bool [in Coq.Arith.Bool_nat]
nat_lt_ge_bool [in Coq.Arith.Bool_nat]
nat_of_P_gt_Gt_compare_complement_morphism [in Coq.PArith.Pnat]
nat_compare_alt [in Coq.Arith.Compare_dec]
Nat_as_OT.eq_dec [in Coq.Structures.OrderedTypeEx]
Nat_as_OT.compare [in Coq.Structures.OrderedTypeEx]
Nat_as_OT.lt [in Coq.Structures.OrderedTypeEx]
Nat_as_OT.eq_trans [in Coq.Structures.OrderedTypeEx]
Nat_as_OT.eq_sym [in Coq.Structures.OrderedTypeEx]
Nat_as_OT.eq_refl [in Coq.Structures.OrderedTypeEx]
Nat_as_OT.eq [in Coq.Structures.OrderedTypeEx]
Nat_as_OT.t [in Coq.Structures.OrderedTypeEx]
nat_po [in Coq.Sets.Integers]
nat_of_ascii [in Coq.Strings.Ascii]
nat_sind [in Coq.Init.Datatypes]
nat_rec [in Coq.Init.Datatypes]
nat_ind [in Coq.Init.Datatypes]
nat_rect [in Coq.Init.Datatypes]
nat_of_int [in Coq.extraction.ExtrOcamlIntConv]
Nat.divide [in Coq.Arith.PeanoNat]
Nat.div2_Odd [in Coq.Arith.PeanoNat]
Nat.div2_Even [in Coq.Arith.PeanoNat]
Nat.double_Odd [in Coq.Arith.PeanoNat]
Nat.double_Even [in Coq.Arith.PeanoNat]
Nat.double_add [in Coq.Arith.PeanoNat]
Nat.double_S [in Coq.Arith.PeanoNat]
Nat.eq [in Coq.Arith.PeanoNat]
Nat.eq_equiv [in Coq.Arith.PeanoNat]
Nat.Even [in Coq.Arith.PeanoNat]
Nat.EvenT [in Coq.Arith.PeanoNat]
Nat.Even_alt_Odd_alt_sind [in Coq.Arith.PeanoNat]
Nat.Even_alt_Odd_alt_ind [in Coq.Arith.PeanoNat]
Nat.Even_alt_Even [in Coq.Arith.PeanoNat]
Nat.Even_alt_sind [in Coq.Arith.PeanoNat]
Nat.Even_alt_ind [in Coq.Arith.PeanoNat]
Nat.Even_double [in Coq.Arith.PeanoNat]
Nat.Even_Odd_double [in Coq.Arith.PeanoNat]
Nat.Even_Odd_div2 [in Coq.Arith.PeanoNat]
Nat.Even_div2 [in Coq.Arith.PeanoNat]
Nat.Even_mul_inv_l [in Coq.Arith.PeanoNat]
Nat.Even_mul_inv_r [in Coq.Arith.PeanoNat]
Nat.Even_mul_r [in Coq.Arith.PeanoNat]
Nat.Even_mul_l [in Coq.Arith.PeanoNat]
Nat.Even_mul_aux [in Coq.Arith.PeanoNat]
Nat.Even_add_Odd_inv_l [in Coq.Arith.PeanoNat]
Nat.Even_add_Odd_inv_r [in Coq.Arith.PeanoNat]
Nat.Even_add_Even_inv_l [in Coq.Arith.PeanoNat]
Nat.Even_add_Even_inv_r [in Coq.Arith.PeanoNat]
Nat.Even_add_aux [in Coq.Arith.PeanoNat]
Nat.Even_Even_add [in Coq.Arith.PeanoNat]
Nat.Even_add_split [in Coq.Arith.PeanoNat]
Nat.Even_Odd_dec [in Coq.Arith.PeanoNat]
Nat.le [in Coq.Arith.PeanoNat]
Nat.lt [in Coq.Arith.PeanoNat]
Nat.Odd [in Coq.Arith.PeanoNat]
Nat.OddT [in Coq.Arith.PeanoNat]
Nat.Odd_alt_Even_alt_sind [in Coq.Arith.PeanoNat]
Nat.Odd_alt_Even_alt_ind [in Coq.Arith.PeanoNat]
Nat.Odd_alt_Odd [in Coq.Arith.PeanoNat]
Nat.Odd_alt_sind [in Coq.Arith.PeanoNat]
Nat.Odd_alt_ind [in Coq.Arith.PeanoNat]
Nat.Odd_double [in Coq.Arith.PeanoNat]
Nat.Odd_div2 [in Coq.Arith.PeanoNat]
Nat.Odd_mul_inv_r [in Coq.Arith.PeanoNat]
Nat.Odd_mul_inv_l [in Coq.Arith.PeanoNat]
Nat.Odd_mul [in Coq.Arith.PeanoNat]
Nat.Odd_add_Odd_inv_r [in Coq.Arith.PeanoNat]
Nat.Odd_add_Odd_inv_l [in Coq.Arith.PeanoNat]
Nat.Odd_add_Even_inv_r [in Coq.Arith.PeanoNat]
Nat.Odd_add_Even_inv_l [in Coq.Arith.PeanoNat]
Nat.Odd_Odd_add [in Coq.Arith.PeanoNat]
Nat.Odd_add_r [in Coq.Arith.PeanoNat]
Nat.Odd_add_l [in Coq.Arith.PeanoNat]
Nat.Odd_add_split [in Coq.Arith.PeanoNat]
Nat.PrivateImplementsBitwiseSpec.shiftl_spec_high [in Coq.Arith.PeanoNat]
Nat.PrivateImplementsBitwiseSpec.shiftr_spec [in Coq.Arith.PeanoNat]
Nat.PrivateImplementsBitwiseSpec.testbit_even_succ [in Coq.Arith.PeanoNat]
Nat.PrivateImplementsBitwiseSpec.testbit_odd_succ [in Coq.Arith.PeanoNat]
Nat.recursion [in Coq.Arith.PeanoNat]
Nat.sqrt_spec [in Coq.Arith.PeanoNat]
NBitsProp.b2n [in Coq.Numbers.Natural.Abstract.NBits]
NBitsProp.clearbit [in Coq.Numbers.Natural.Abstract.NBits]
NBitsProp.eqf [in Coq.Numbers.Natural.Abstract.NBits]
NBitsProp.lnot [in Coq.Numbers.Natural.Abstract.NBits]
NBitsProp.ones [in Coq.Numbers.Natural.Abstract.NBits]
NBitsProp.setbit [in Coq.Numbers.Natural.Abstract.NBits]
Nbound [in Coq.Reals.RiemannInt_SF]
nb_digits [in Coq.Init.Decimal]
nb_digits [in Coq.Init.Hexadecimal]
ncurry [in Coq.Numbers.NaryFunctions]
NdefOpsProp.def_mul [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.def_add [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.even [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.half [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.half_aux [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.if_zero [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.log [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.ltb [in Coq.Numbers.Natural.Abstract.NDefOps]
NdefOpsProp.pow [in Coq.Numbers.Natural.Abstract.NDefOps]
NDivProp0.div_add_l [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_add [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_le_compat_l [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_le_lower_bound [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_lt [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_str_pos_iff [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_small_iff [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_str_pos [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_mul [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_1_l [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_1_r [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_small [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_same [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_unique_exact [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_unique [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.div_mod_unique [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.mod_small_iff [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.mod_1_l [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.mod_1_r [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.mod_small [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.mod_unique [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.mod_upper_bound [in Coq.Numbers.Natural.Abstract.NDiv0]
NDivProp0.mul_succ_div_gt [in Coq.Numbers.Natural.Abstract.NDiv0]
negate [in Coq.micromega.RingMicromega]
negate [in Coq.micromega.ZMicromega]
negb [in Coq.Init.Datatypes]
neg_zero [in Coq.Floats.PrimFloat]
neg_infinity [in Coq.Floats.PrimFloat]
neighbourhood [in Coq.Reals.Rtopology]
neq [in Coq.ZArith.Znat]
nequiv_decb [in Coq.Classes.EquivDec]
nequiv_dec [in Coq.Classes.EquivDec]
nequiv_decb [in Coq.Classes.SetoidDec]
nequiv_dec [in Coq.Classes.SetoidDec]
neq_0_lt_stt [in Coq.Arith.Arith_base]
nesym [in Coq.ssr.ssrfun]
NewtonInt [in Coq.Reals.NewtonInt]
Newton_integrable [in Coq.Reals.NewtonInt]
new_location [in Coq.Floats.SpecFloat]
new_location_odd [in Coq.Floats.SpecFloat]
new_location_even [in Coq.Floats.SpecFloat]
nfold [in Coq.Numbers.NaryFunctions]
nfold_list [in Coq.Numbers.NaryFunctions]
nfold_bis [in Coq.Numbers.NaryFunctions]
NFormula [in Coq.micromega.RingMicromega]
nformula_plus_nformula [in Coq.micromega.RingMicromega]
nformula_times_nformula [in Coq.micromega.RingMicromega]
nformula_of_cutting_plane [in Coq.micromega.ZMicromega]
nfun [in Coq.Numbers.NaryFunctions]
nfun_to_nfun_bis [in Coq.Numbers.NaryFunctions]
nfun_to_nfun [in Coq.Numbers.NaryFunctions]
NGcdProp.Bezout [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_gcd_iff [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_pos_le [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_factor_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_factor_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_mul_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_mul_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_add_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_antisym [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_trans [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_refl [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_0_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_0_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_1_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.divide_1_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_mul_diag_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_eq_0 [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_eq_0_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_eq_0_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_assoc [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_comm [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_unique_alt [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_unique [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_diag [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_0_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.gcd_0_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.mul_divide_cancel_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.mul_divide_cancel_l [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.mul_divide_mono_r [in Coq.Numbers.Natural.Abstract.NGcd]
NGcdProp.mul_divide_mono_l [in Coq.Numbers.Natural.Abstract.NGcd]
nhyps_of_psatz [in Coq.micromega.RingMicromega]
NilEmpty.int_of_string [in Coq.Numbers.DecimalString]
NilEmpty.int_of_string [in Coq.Numbers.HexadecimalString]
NilEmpty.string_of_int [in Coq.Numbers.DecimalString]
NilEmpty.string_of_uint [in Coq.Numbers.DecimalString]
NilEmpty.string_of_int [in Coq.Numbers.HexadecimalString]
NilEmpty.string_of_uint [in Coq.Numbers.HexadecimalString]
NilEmpty.uint_of_string [in Coq.Numbers.DecimalString]
NilEmpty.uint_of_string [in Coq.Numbers.HexadecimalString]
NilZero.int_of_string [in Coq.Numbers.DecimalString]
NilZero.int_of_string [in Coq.Numbers.HexadecimalString]
NilZero.string_of_int [in Coq.Numbers.DecimalString]
NilZero.string_of_uint [in Coq.Numbers.DecimalString]
NilZero.string_of_int [in Coq.Numbers.HexadecimalString]
NilZero.string_of_uint [in Coq.Numbers.HexadecimalString]
NilZero.uint_of_string [in Coq.Numbers.DecimalString]
NilZero.uint_of_string [in Coq.Numbers.HexadecimalString]
NLcmProp.lcm [in Coq.Numbers.Natural.Abstract.NLcm]
NLcmProp0.divide_lcm_iff [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.divide_lcm_eq_r [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.divide_lcm_r [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.divide_lcm_l [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.gcd_1_lcm_mul [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.gcd_div_swap [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.gcd_div_gcd [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_mul_mono_r [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_mul_mono_l [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_eq_0 [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_diag [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_1_r [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_1_l [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_0_r [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_0_l [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_assoc [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_divide_iff [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_comm [in Coq.Numbers.Natural.Abstract.NLcm0]
NLcmProp0.lcm_least [in Coq.Numbers.Natural.Abstract.NLcm0]
Nleb [in Coq.NArith.Ndec]
NMulOrderProp.mul_eq_1 [in Coq.Numbers.Natural.Abstract.NMulOrder]
node [in Coq.micromega.ZMicromega]
NodepOfDep.Add [in Coq.FSets.FSetBridge]
NodepOfDep.add [in Coq.FSets.FSetBridge]
NodepOfDep.cardinal [in Coq.FSets.FSetBridge]
NodepOfDep.choose [in Coq.FSets.FSetBridge]
NodepOfDep.compare [in Coq.FSets.FSetBridge]
NodepOfDep.diff [in Coq.FSets.FSetBridge]
NodepOfDep.elements [in Coq.FSets.FSetBridge]
NodepOfDep.elt [in Coq.FSets.FSetBridge]
NodepOfDep.Empty [in Coq.FSets.FSetBridge]
NodepOfDep.empty [in Coq.FSets.FSetBridge]
NodepOfDep.eq [in Coq.FSets.FSetBridge]
NodepOfDep.Equal [in Coq.FSets.FSetBridge]
NodepOfDep.equal [in Coq.FSets.FSetBridge]
NodepOfDep.eq_trans [in Coq.FSets.FSetBridge]
NodepOfDep.eq_sym [in Coq.FSets.FSetBridge]
NodepOfDep.eq_refl [in Coq.FSets.FSetBridge]
NodepOfDep.eq_dec [in Coq.FSets.FSetBridge]
NodepOfDep.Exists [in Coq.FSets.FSetBridge]
NodepOfDep.exists_ [in Coq.FSets.FSetBridge]
NodepOfDep.filter [in Coq.FSets.FSetBridge]
NodepOfDep.fold [in Coq.FSets.FSetBridge]
NodepOfDep.For_all [in Coq.FSets.FSetBridge]
NodepOfDep.for_all [in Coq.FSets.FSetBridge]
NodepOfDep.f_dec [in Coq.FSets.FSetBridge]
NodepOfDep.In [in Coq.FSets.FSetBridge]
NodepOfDep.inter [in Coq.FSets.FSetBridge]
NodepOfDep.In_1 [in Coq.FSets.FSetBridge]
NodepOfDep.is_empty [in Coq.FSets.FSetBridge]
NodepOfDep.lt [in Coq.FSets.FSetBridge]
NodepOfDep.lt_not_eq [in Coq.FSets.FSetBridge]
NodepOfDep.lt_trans [in Coq.FSets.FSetBridge]
NodepOfDep.max_elt [in Coq.FSets.FSetBridge]
NodepOfDep.mem [in Coq.FSets.FSetBridge]
NodepOfDep.min_elt [in Coq.FSets.FSetBridge]
NodepOfDep.partition [in Coq.FSets.FSetBridge]
NodepOfDep.remove [in Coq.FSets.FSetBridge]
NodepOfDep.singleton [in Coq.FSets.FSetBridge]
NodepOfDep.Subset [in Coq.FSets.FSetBridge]
NodepOfDep.subset [in Coq.FSets.FSetBridge]
NodepOfDep.t [in Coq.FSets.FSetBridge]
NodepOfDep.union [in Coq.FSets.FSetBridge]
nodup [in Coq.Lists.List]
NoDupA_sind [in Coq.Lists.SetoidList]
NoDupA_ind [in Coq.Lists.SetoidList]
NoDup_sind [in Coq.Lists.List]
NoDup_ind [in Coq.Lists.List]
Noetherian [in Coq.Sets.Relations_3]
noetherian_sind [in Coq.Sets.Relations_3]
noetherian_rec [in Coq.Sets.Relations_3]
noetherian_ind [in Coq.Sets.Relations_3]
noetherian_rect [in Coq.Sets.Relations_3]
NonPropType.call [in Coq.ssr.ssreflect]
NonPropType.check [in Coq.ssr.ssreflect]
NonPropType.maybeProp [in Coq.ssr.ssreflect]
NonPropType.test_negative [in Coq.ssr.ssreflect]
NonPropType.test_Prop [in Coq.ssr.ssreflect]
Nopp [in Coq.setoid_ring.InitialRing]
NoRetractFromSmallPropositionToProp.El [in Coq.Logic.Hurkens]
NoRetractFromSmallPropositionToProp.NProp [in Coq.Logic.Hurkens]
NoRetractFromTypeToProp.Type1 [in Coq.Logic.Hurkens]
NoRetractFromTypeToProp.Type2 [in Coq.Logic.Hurkens]
NoRetractToModalProposition.El [in Coq.Logic.Hurkens]
NoRetractToModalProposition.Forall [in Coq.Logic.Hurkens]
NoRetractToModalProposition.MProp [in Coq.Logic.Hurkens]
NoRetractToNegativeProp.El [in Coq.Logic.Hurkens]
NoRetractToNegativeProp.NProp [in Coq.Logic.Hurkens]
norm [in Coq.Init.Decimal]
norm [in Coq.nsatz.NsatzTactic]
norm [in Coq.micromega.RingMicromega]
norm [in Coq.Init.Hexadecimal]
normalise [in Coq.micromega.RingMicromega]
normalise [in Coq.micromega.ZMicromega]
normQ [in Coq.micromega.QMicromega]
normZ [in Coq.micromega.ZMicromega]
norm_subst [in Coq.setoid_ring.Ring_polynom]
norm_aux [in Coq.setoid_ring.Ring_polynom]
norm_subst [in Coq.micromega.EnvRing]
norm_aux [in Coq.micromega.EnvRing]
norm_subst [in Coq.setoid_ring.Ncring_polynom]
norm_aux [in Coq.setoid_ring.Ncring_polynom]
not [in Coq.Init.Logic]
NotConstant [in Coq.setoid_ring.Ncring_initial]
NotConstant [in Coq.setoid_ring.InitialRing]
notF [in Coq.ssr.ssrbool]
notT [in Coq.Init.Logic]
notzerop [in Coq.Arith.Bool_nat]
notzerop_bool [in Coq.Arith.Bool_nat]
not_eq_false_beq [in Coq.Bool.BoolEq]
Not_b [in Coq.Logic.Berardi]
no_cond [in Coq.Reals.Ranalysis1]
NPEadd [in Coq.setoid_ring.Field_theory]
NPEequiv [in Coq.setoid_ring.Field_theory]
NPEmul [in Coq.setoid_ring.Field_theory]
NPEopp [in Coq.setoid_ring.Field_theory]
NPEpow [in Coq.setoid_ring.Field_theory]
NPEsub [in Coq.setoid_ring.Field_theory]
NPowProp.pow_lt_mono [in Coq.Numbers.Natural.Abstract.NPow]
NPowProp.pow_2_r [in Coq.Numbers.Natural.Abstract.NPow]
NPowProp.pow_1_r [in Coq.Numbers.Natural.Abstract.NPow]
nprod [in Coq.Numbers.NaryFunctions]
nprod_of_list [in Coq.Numbers.NaryFunctions]
nprod_to_list [in Coq.Numbers.NaryFunctions]
NSqrtProp.sqrt_add_le [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_mul_below [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_lt_lin [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_2 [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_1 [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_0 [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_lt_cancel [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_le_mono [in Coq.Numbers.Natural.Abstract.NSqrt]
NSqrtProp.sqrt_unique [in Coq.Numbers.Natural.Abstract.NSqrt]
NStrongRecProp.strong_rec0 [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecProp.strong_rec [in Coq.Numbers.Natural.Abstract.NStrongRec]
Nsub [in Coq.setoid_ring.InitialRing]
NSubProp.le_alt [in Coq.Numbers.Natural.Abstract.NSub]
NSubProp.lt_alt [in Coq.Numbers.Natural.Abstract.NSub]
nth [in Coq.setoid_ring.BinList]
nth [in Coq.Lists.List]
nth [in Coq.micromega.Env]
nth [in Coq.Vectors.VectorDef]
nth_default [in Coq.Lists.List]
nth_error [in Coq.Lists.List]
nth_ok [in Coq.Lists.List]
nth_order [in Coq.Vectors.VectorDef]
NtoZ [in Coq.setoid_ring.Field_theory]
null_sind [in Coq.btauto.Algebra]
null_rec [in Coq.btauto.Algebra]
null_ind [in Coq.btauto.Algebra]
null_rect [in Coq.btauto.Algebra]
number_eq_dec [in Coq.Init.Number]
nuncurry [in Coq.Numbers.NaryFunctions]
nu_constant [in Coq.Logic.Eqdep_dec]
Nwadd [in Coq.setoid_ring.InitialRing]
Nwcons [in Coq.setoid_ring.InitialRing]
Nweq_bool [in Coq.setoid_ring.InitialRing]
NwI [in Coq.setoid_ring.InitialRing]
Nwmul [in Coq.setoid_ring.InitialRing]
NwO [in Coq.setoid_ring.InitialRing]
Nwopp [in Coq.setoid_ring.InitialRing]
Nword [in Coq.setoid_ring.InitialRing]
Nwscal [in Coq.setoid_ring.InitialRing]
Nwsub [in Coq.setoid_ring.InitialRing]
Nw_is0 [in Coq.setoid_ring.InitialRing]
NZCyclicAxiomsMod.add [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.eq [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.mul [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.one [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.pred [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.sub [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.succ [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.t [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.two [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.zero [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZDomainProp.initial [in Coq.Numbers.NatInt.NZDomain]
NZGcdSpec.divide [in Coq.Numbers.NatInt.NZGcd]
nzhead [in Coq.Init.Decimal]
nzhead [in Coq.Init.Hexadecimal]
NZLog2UpProp.log2_up [in Coq.Numbers.NatInt.NZLog]
NZOfNat.ofnat [in Coq.Numbers.NatInt.NZDomain]
NZOrderProp.le_lteq [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.lt_total [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.lt_compat [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Private_OrderTac.IsTotal.le_lteq [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Private_OrderTac.IsTotal.lt_total [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Private_OrderTac.IsTotal.lt_compat [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Private_OrderTac.IsTotal.lt_strorder [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Private_OrderTac.IsTotal.eq_equiv [in Coq.Numbers.NatInt.NZOrder]
NZParity.Even [in Coq.Numbers.NatInt.NZParity]
NZParity.Odd [in Coq.Numbers.NatInt.NZParity]
NZSqrtUpProp.sqrt_up [in Coq.Numbers.NatInt.NZSqrt]
nztail [in Coq.Init.Decimal]
nztail [in Coq.Numbers.DecimalFacts]
nztail [in Coq.Init.Hexadecimal]
nztail [in Coq.Numbers.HexadecimalFacts]
nztail_int [in Coq.Init.Decimal]
nztail_int [in Coq.Init.Hexadecimal]
N_rec_double [in Coq.NArith.BinNat]
N_ind_double [in Coq.NArith.BinNat]
N_as_OT.eq_dec [in Coq.Structures.OrderedTypeEx]
N_as_OT.compare [in Coq.Structures.OrderedTypeEx]
N_as_OT.lt_not_eq [in Coq.Structures.OrderedTypeEx]
N_as_OT.lt_trans [in Coq.Structures.OrderedTypeEx]
N_as_OT.lt [in Coq.Structures.OrderedTypeEx]
N_as_OT.eq_trans [in Coq.Structures.OrderedTypeEx]
N_as_OT.eq_sym [in Coq.Structures.OrderedTypeEx]
N_as_OT.eq_refl [in Coq.Structures.OrderedTypeEx]
N_as_OT.eq [in Coq.Structures.OrderedTypeEx]
N_as_OT.t [in Coq.Structures.OrderedTypeEx]
N_of_ascii [in Coq.Strings.Ascii]
N_of_digits [in Coq.Strings.Ascii]
N_sind [in Coq.Numbers.BinNums]
N_rec [in Coq.Numbers.BinNums]
N_ind [in Coq.Numbers.BinNums]
N_rect [in Coq.Numbers.BinNums]
n_of_int [in Coq.extraction.ExtrOcamlIntConv]
n_to_z [in Coq.Numbers.AltBinNotations]
n_of_z [in Coq.Numbers.AltBinNotations]
N.add [in Coq.NArith.BinNatDef]
N.add_wd [in Coq.NArith.BinNat]
N.binary_ind [in Coq.NArith.BinNat]
N.binary_rec [in Coq.NArith.BinNat]
N.binary_rect [in Coq.NArith.BinNat]
N.compare [in Coq.NArith.BinNatDef]
N.discr [in Coq.NArith.BinNat]
N.div [in Coq.NArith.BinNatDef]
N.divide [in Coq.NArith.BinNat]
N.div_mod [in Coq.NArith.BinNat]
N.div_wd [in Coq.NArith.BinNat]
N.div_eucl [in Coq.NArith.BinNatDef]
N.div2 [in Coq.NArith.BinNatDef]
N.div2_spec [in Coq.NArith.BinNat]
N.double [in Coq.NArith.BinNatDef]
N.eq [in Coq.NArith.BinNat]
N.eqb [in Coq.NArith.BinNatDef]
N.eq_dec [in Coq.NArith.BinNat]
N.eq_equiv [in Coq.NArith.BinNat]
N.Even [in Coq.NArith.BinNat]
N.even [in Coq.NArith.BinNatDef]
N.gcd [in Coq.NArith.BinNatDef]
N.ge [in Coq.NArith.BinNat]
N.ggcd [in Coq.NArith.BinNatDef]
N.gt [in Coq.NArith.BinNat]
N.iter [in Coq.NArith.BinNatDef]
N.land [in Coq.NArith.BinNatDef]
N.ldiff [in Coq.NArith.BinNatDef]
N.le [in Coq.NArith.BinNat]
N.leb [in Coq.NArith.BinNatDef]
N.log2 [in Coq.NArith.BinNatDef]
N.lor [in Coq.NArith.BinNatDef]
N.lt [in Coq.NArith.BinNat]
N.ltb [in Coq.NArith.BinNatDef]
N.lt_wd [in Coq.NArith.BinNat]
N.lxor [in Coq.NArith.BinNatDef]
N.max [in Coq.NArith.BinNatDef]
N.min [in Coq.NArith.BinNatDef]
N.modulo [in Coq.NArith.BinNatDef]
N.mod_wd [in Coq.NArith.BinNat]
N.mul [in Coq.NArith.BinNatDef]
N.mul_wd [in Coq.NArith.BinNat]
N.Odd [in Coq.NArith.BinNat]
N.odd [in Coq.NArith.BinNatDef]
N.of_num_int [in Coq.NArith.BinNatDef]
N.of_hex_int [in Coq.NArith.BinNatDef]
N.of_int [in Coq.NArith.BinNatDef]
N.of_num_uint [in Coq.NArith.BinNatDef]
N.of_hex_uint [in Coq.NArith.BinNatDef]
N.of_uint [in Coq.NArith.BinNatDef]
N.of_nat [in Coq.NArith.BinNatDef]
N.one [in Coq.NArith.BinNatDef]
N.peano_rec [in Coq.NArith.BinNat]
N.peano_ind [in Coq.NArith.BinNat]
N.peano_rect [in Coq.NArith.BinNat]
N.pos_div_eucl [in Coq.NArith.BinNatDef]
N.pow [in Coq.NArith.BinNatDef]
N.pow_wd [in Coq.NArith.BinNat]
N.pred [in Coq.NArith.BinNatDef]
N.pred_0 [in Coq.NArith.BinNat]
N.pred_wd [in Coq.NArith.BinNat]
N.recursion [in Coq.NArith.BinNat]
N.shiftl [in Coq.NArith.BinNatDef]
N.shiftl_nat [in Coq.NArith.BinNatDef]
N.shiftr [in Coq.NArith.BinNatDef]
N.shiftr_nat [in Coq.NArith.BinNatDef]
N.size [in Coq.NArith.BinNatDef]
N.size_nat [in Coq.NArith.BinNatDef]
N.sqrt [in Coq.NArith.BinNatDef]
N.sqrtrem [in Coq.NArith.BinNatDef]
N.square [in Coq.NArith.BinNatDef]
N.sub [in Coq.NArith.BinNatDef]
N.sub_wd [in Coq.NArith.BinNat]
N.succ [in Coq.NArith.BinNatDef]
N.succ_wd [in Coq.NArith.BinNat]
N.succ_pos [in Coq.NArith.BinNatDef]
N.succ_double [in Coq.NArith.BinNatDef]
N.t [in Coq.NArith.BinNatDef]
N.testbit [in Coq.NArith.BinNatDef]
N.testbit_wd [in Coq.NArith.BinNat]
N.testbit_nat [in Coq.NArith.BinNatDef]
N.to_num_hex_int [in Coq.NArith.BinNatDef]
N.to_num_int [in Coq.NArith.BinNatDef]
N.to_hex_int [in Coq.NArith.BinNatDef]
N.to_int [in Coq.NArith.BinNatDef]
N.to_num_hex_uint [in Coq.NArith.BinNatDef]
N.to_num_uint [in Coq.NArith.BinNatDef]
N.to_hex_uint [in Coq.NArith.BinNatDef]
N.to_uint [in Coq.NArith.BinNatDef]
N.to_nat [in Coq.NArith.BinNatDef]
N.two [in Coq.NArith.BinNatDef]
N.zero [in Coq.NArith.BinNatDef]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (25958 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (999 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (811 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1769 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (587 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (11879 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (960 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (508 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (307 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (479 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (495 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (905 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1199 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4894 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (166 entries)